科目: 來(lái)源: 題型:
【題目】已知分別是雙曲線(xiàn)的左、右焦點(diǎn),過(guò)點(diǎn)作垂直與軸的直線(xiàn)交雙曲線(xiàn)于,兩點(diǎn),若為銳角三角形,則雙曲線(xiàn)的離心率的取值范圍是_______.
【答案】
【解析】
根據(jù)雙曲線(xiàn)的通徑求得點(diǎn)的坐標(biāo),將三角形為銳角三角形,轉(zhuǎn)化為,即,將表達(dá)式轉(zhuǎn)化為含有離心率的不等式,解不等式求得離心率的取值范圍.
根據(jù)雙曲線(xiàn)的通徑可知,由于三角形為銳角三角形,結(jié)合雙曲線(xiàn)的對(duì)稱(chēng)性可知,故,即,即,解得,故離心率的取值范圍是.
【點(diǎn)睛】
本小題主要考查雙曲線(xiàn)的離心率的取值范圍的求法,考查雙曲線(xiàn)的通徑,考查雙曲線(xiàn)的對(duì)稱(chēng)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.本小題的主要突破口在將三角形為銳角三角形,轉(zhuǎn)化為,利用列不等式,再將不等式轉(zhuǎn)化為只含離心率的表達(dá)式,解不等式求得雙曲線(xiàn)離心率的取值范圍.
【題型】填空題
【結(jié)束】
17
【題目】已知命題:方程有兩個(gè)不相等的實(shí)數(shù)根;命題:不等式的解集為.若或為真,為假,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖所示,在四棱柱中,底面是梯形,,側(cè)面為菱形,.
(Ⅰ)求證:;
(Ⅱ)若,,直線(xiàn)與平面所成的角為,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】設(shè)是雙曲線(xiàn):的右焦點(diǎn),是左支上的點(diǎn),已知,則周長(zhǎng)的最小值是_______.
【答案】
【解析】
設(shè)左焦點(diǎn)為,利用雙曲線(xiàn)的定義,得到當(dāng)三點(diǎn)共線(xiàn)時(shí),三角形的周長(zhǎng)取得最小值,并求得最小的周長(zhǎng).
設(shè)左焦點(diǎn)為,根據(jù)雙曲線(xiàn)的定義可知,所以三角形的周長(zhǎng)為,當(dāng)三點(diǎn)共線(xiàn)時(shí),取得最小值,三角形的周長(zhǎng)取得最小值. ,故三角形周長(zhǎng)的最小值為.
【點(diǎn)睛】
本小題主要考查雙曲線(xiàn)的定義,考查三角形周長(zhǎng)最小值的求法,屬于中檔題.
【題型】填空題
【結(jié)束】
16
【題目】已知分別是雙曲線(xiàn)的左、右焦點(diǎn),過(guò)點(diǎn)作垂直與軸的直線(xiàn)交雙曲線(xiàn)于,兩點(diǎn),若為銳角三角形,則雙曲線(xiàn)的離心率的取值范圍是_______.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知是橢圓上一動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),則線(xiàn)段中點(diǎn)的軌跡方程為_______.
【答案】
【解析】
設(shè)出點(diǎn)的坐標(biāo),由此得到點(diǎn)的坐標(biāo),將點(diǎn)坐標(biāo)代入橢圓方程,化簡(jiǎn)后可得點(diǎn)的軌跡方程.
設(shè),由于是中點(diǎn),故,代入橢圓方程得,化簡(jiǎn)得.即點(diǎn)的軌跡方程為.
【點(diǎn)睛】
本小題主要考查代入法求動(dòng)點(diǎn)的軌跡方程,考查中點(diǎn)坐標(biāo),屬于基礎(chǔ)題.
【題型】填空題
【結(jié)束】
15
【題目】設(shè)是雙曲線(xiàn):的右焦點(diǎn),是左支上的點(diǎn),已知,則周長(zhǎng)的最小值是_______.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】“劍橋?qū)W派”創(chuàng)始人之一數(shù)學(xué)家哈代說(shuō)過(guò):“數(shù)學(xué)家的造型,同畫(huà)家和詩(shī)人一樣,也應(yīng)當(dāng)是美麗的”;古希臘數(shù)學(xué)家畢達(dá)哥拉斯創(chuàng)造的“黃金分割”給我們的生活處處帶來(lái)美;我國(guó)古代數(shù)學(xué)家趙爽創(chuàng)造了優(yōu)美“弦圖”.“弦圖”是由四個(gè)全等的直角三角形與一個(gè)小正方形拼成的一個(gè)大正方形,如果小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為,則等于( )
A.B.C.D.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)若,求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)若,求證:有且僅有兩個(gè)零點(diǎn);
(3)若為整數(shù),且當(dāng)時(shí),恒成立,求的最大值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知的頂點(diǎn), 在橢圓上, 在直線(xiàn)上,且.
()求橢圓的離心率.
()當(dāng)邊通過(guò)坐標(biāo)原點(diǎn)時(shí),求的長(zhǎng)及的面積.
()當(dāng),且斜邊的長(zhǎng)最大時(shí),求所在直線(xiàn)的方程.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,等腰梯形中, , 于點(diǎn), ,且.沿把折起到的位置,使.
()求證: 平面.
()求三棱柱的體積.
()線(xiàn)段上是否存在點(diǎn),使得平面.若存在,指出點(diǎn)的位置并證明;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】若實(shí)數(shù),滿(mǎn)足,則的最小值是( )
A. 0 B. C. -6 D. -3
【答案】C
【解析】
畫(huà)出可行域,向上平移目標(biāo)函數(shù)到可行域邊界的位置,由此求得目標(biāo)函數(shù)的最小值.
畫(huà)出可行域如下圖所示,由圖可知,目標(biāo)函數(shù)在點(diǎn)處取得最小值為.故選C.
【點(diǎn)睛】
本小題主要考查線(xiàn)性規(guī)劃的知識(shí),考查線(xiàn)性目標(biāo)函數(shù)的最值的求法,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.畫(huà)可行域時(shí),要注意判斷不等式所表示的范圍是在直線(xiàn)的哪個(gè)方位,不一定是三條直線(xiàn)圍成的三角形.還要注意目標(biāo)函數(shù)化成斜截式后,截距和目標(biāo)函數(shù)的對(duì)應(yīng)關(guān)系,截距最大時(shí),目標(biāo)函數(shù)不一定取得最大值,可能取得最小值.
【題型】單選題
【結(jié)束】
12
【題目】已知,是橢圓長(zhǎng)軸上的兩個(gè)端點(diǎn),,是橢圓上關(guān)于軸對(duì)稱(chēng)的兩點(diǎn),直線(xiàn),的斜率分別為,若橢圓的離心率為,則的最小值為( )
A. 1 B. C. D. 2
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,四棱柱ABCD﹣A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,AB=AA1=.
(Ⅰ)證明:平面A1BD∥平面CD1B1;
(Ⅱ)求三棱柱ABD﹣A1B1D1的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com