相關(guān)習(xí)題
 0  261675  261683  261689  261693  261699  261701  261705  261711  261713  261719  261725  261729  261731  261735  261741  261743  261749  261753  261755  261759  261761  261765  261767  261769  261770  261771  261773  261774  261775  261777  261779  261783  261785  261789  261791  261795  261801  261803  261809  261813  261815  261819  261825  261831  261833  261839  261843  261845  261851  261855  261861  261869  266669 

科目: 來源: 題型:

【題目】(題文)已知等差數(shù)列{an}的首項a1≠0,前n項和為Sn,且S4a2=2S3;等比數(shù)列{bn}滿足b1a2b2a4.

(1)求證:數(shù)列{bn}中的每一項都是數(shù)列{an}中的項;

(2)若a1=2,設(shè)cn,求數(shù)列{cn}的前n項和Tn;

(3)在(2)的條件下,若有f(n)=log3Tn,求f(1)+f(2)+…+f(n)的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】為保障公平性,高考時每個考點都要安裝手機屏蔽儀,要求在考點周圍1千米處不能收到手機信號,如圖,檢查員抽查某市一考點,以考點正西千米的處開始為檢查起點,沿著一條北偏東方向的公路,以每小時12千米的速度行駛,并用手機接通電話,問從起點開始計時,最長經(jīng)過多少分鐘檢查員開始收不到信號(點開始),并至少持續(xù)多長時間(之間)該考點才算檢查合格?

查看答案和解析>>

科目: 來源: 題型:

【題目】下圖是改革開放四十周年大型展覽的展館--------國家博物館.現(xiàn)欲測量博物館正門柱樓頂部一點離地面的高度(點在柱樓底部).在地面上的兩點,測得點的仰角分別為,,且米,則為( )

A. 10米 B. 20米 C. 30米 D. 40米

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓和點,動圓經(jīng)過點且與圓相切,圓心的軌跡為曲線

(Ⅰ)求曲線的方程;

(Ⅱ)四邊形的頂點在曲線上,且對角線均過坐標(biāo)原點,若 .

(i) 求的范圍;(ii) 求四邊形的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知{xn}是各項均為正數(shù)的等比數(shù)列,且x1x2=3,x3x2=2.

(1)求數(shù)列{xn}的通項公式;

(2)如圖,在平面直角坐標(biāo)系xOy中,依次連接點P1(x1,1),P(x2,2),…,Pn+1(xn+1,n+1)得到折線P1P2Pn+1,求由該折線與直線y=0,xx1,xxn+1所圍成的區(qū)域的面積Tn

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點,圓,過點的動直線與圓交于兩點,線段的中點為,為坐標(biāo)原點.

(Ⅰ)求的軌跡方程;

(Ⅱ)當(dāng)不重合)時,求的方程及的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知{an}是各項均為正數(shù)的等比數(shù)列,且a1a2=6,a1a2a3.

(1)求數(shù)列{an}的通項公式;

(2){bn}為各項非零的等差數(shù)列,其前n項和為Sn.已知S2n+1bnbn+1,求數(shù)列{}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:

【題目】已知等差數(shù)列{an} 和等比數(shù)列{bn}滿足a1b1=1,a2a4=10,b2b4a5.

(1)求{an}的通項公式;

(2)求和:b1b3b5+…+b2n-1.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知等差數(shù)列和等比數(shù)列滿足,

1的通項公式;

2求和:

【答案】1;(2

【解析】試題分析:(1)根據(jù)等差數(shù)列 ,列出關(guān)于首項公差的方程組,解方程組可得的值,從而可得數(shù)列的通項公式;(2)利用已知條件根據(jù)題意列出關(guān)于首項 ,公比 的方程組,解得、的值求出數(shù)列的通項公式,然后利用等比數(shù)列求和公式求解即可.

試題解析:(1)設(shè)等差數(shù)列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10.解得d=2.

所以an=2n1.

(2)設(shè)等比數(shù)列的公比為q. 因為b2b4=a5,所以b1qb1q3=9.

解得q2=3.所以.

從而.

型】解答
結(jié)束】
18

【題目】已知命題:實數(shù)滿足,其中;命題:方程表示雙曲線.

(1)若,且為真,求實數(shù)的取值范圍;

(2)若的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程是為參數(shù))以原點為極點, 軸正半軸為極軸,并取與直角坐標(biāo)系相同的單位長度,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(1)求曲線, 的直角坐標(biāo)方程;

(2)若分別是曲線上的任意點,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案