科目: 來源: 題型:
【題目】(題文)已知等差數(shù)列{an}的首項a1≠0,前n項和為Sn,且S4+a2=2S3;等比數(shù)列{bn}滿足b1=a2,b2=a4.
(1)求證:數(shù)列{bn}中的每一項都是數(shù)列{an}中的項;
(2)若a1=2,設(shè)cn=,求數(shù)列{cn}的前n項和Tn;
(3)在(2)的條件下,若有f(n)=log3Tn,求f(1)+f(2)+…+f(n)的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為保障公平性,高考時每個考點都要安裝手機屏蔽儀,要求在考點周圍1千米處不能收到手機信號,如圖,檢查員抽查某市一考點,以考點正西千米的處開始為檢查起點,沿著一條北偏東方向的公路,以每小時12千米的速度行駛,并用手機接通電話,問從起點開始計時,最長經(jīng)過多少分鐘檢查員開始收不到信號(點開始),并至少持續(xù)多長時間(之間)該考點才算檢查合格?
查看答案和解析>>
科目: 來源: 題型:
【題目】下圖是改革開放四十周年大型展覽的展館--------國家博物館.現(xiàn)欲測量博物館正門柱樓頂部一點離地面的高度(點在柱樓底部).在地面上的兩點,測得點的仰角分別為,,且,米,則為( )
A. 10米 B. 20米 C. 30米 D. 40米
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓:和點,動圓經(jīng)過點且與圓相切,圓心的軌跡為曲線.
(Ⅰ)求曲線的方程;
(Ⅱ)四邊形的頂點在曲線上,且對角線均過坐標(biāo)原點,若 .
(i) 求的范圍;(ii) 求四邊形的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知{xn}是各項均為正數(shù)的等比數(shù)列,且x1+x2=3,x3-x2=2.
(1)求數(shù)列{xn}的通項公式;
(2)如圖,在平面直角坐標(biāo)系xOy中,依次連接點P1(x1,1),P(x2,2),…,Pn+1(xn+1,n+1)得到折線P1P2…Pn+1,求由該折線與直線y=0,x=x1,x=xn+1所圍成的區(qū)域的面積Tn.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點,圓,過點的動直線與圓交于兩點,線段的中點為,為坐標(biāo)原點.
(Ⅰ)求的軌跡方程;
(Ⅱ)當(dāng)(不重合)時,求的方程及的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知{an}是各項均為正數(shù)的等比數(shù)列,且a1+a2=6,a1a2=a3.
(1)求數(shù)列{an}的通項公式;
(2){bn}為各項非零的等差數(shù)列,其前n項和為Sn.已知S2n+1=bnbn+1,求數(shù)列{}的前n項和Tn.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等差數(shù)列{an} 和等比數(shù)列{bn}滿足a1=b1=1,a2+a4=10,b2b4=a5.
(1)求{an}的通項公式;
(2)求和:b1+b3+b5+…+b2n-1.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等差數(shù)列和等比數(shù)列滿足, , .
(1)求的通項公式;
(2)求和: .
【答案】(1);(2).
【解析】試題分析:(1)根據(jù)等差數(shù)列的, ,列出關(guān)于首項、公差的方程組,解方程組可得與的值,從而可得數(shù)列的通項公式;(2)利用已知條件根據(jù)題意列出關(guān)于首項 ,公比 的方程組,解得、的值,求出數(shù)列的通項公式,然后利用等比數(shù)列求和公式求解即可.
試題解析:(1)設(shè)等差數(shù)列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)設(shè)等比數(shù)列的公比為q. 因為b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以.
從而.
【題型】解答題
【結(jié)束】
18
【題目】已知命題:實數(shù)滿足,其中;命題:方程表示雙曲線.
(1)若,且為真,求實數(shù)的取值范圍;
(2)若是的充分不必要條件,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù))以原點為極點, 軸正半軸為極軸,并取與直角坐標(biāo)系相同的單位長度,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)求曲線, 的直角坐標(biāo)方程;
(2)若、分別是曲線和上的任意點,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com