科目: 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)過橢圓的左焦點的直線與橢圓交于兩點,直線過坐標原點且與直線的斜率互為相反數(shù).若直線與橢圓交于兩點且均不與點重合,設直線與軸所成的銳角為,直線與軸所成的銳角為,判斷與的大小關系并加以證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】中國明代商人程大位對文學和數(shù)學也頗感興趣,他于60歲時完成杰作直指算法統(tǒng)宗,這是一本風行東亞的數(shù)學名著,該書第五卷有問題云:“今有白米一百八十石,令三人從上及和減率分之,只云甲多丙米三十六石,問:各該若干?”翻譯成現(xiàn)代文就是:“今有百米一百八十石,甲乙丙三個人來分,他們分得的米數(shù)構成等差數(shù)列,只知道甲比丙多分三十六石,那么三人各分得多少米?”請你計算甲應該分得
A. 78石 B. 76石 C. 75石 D. 74石
查看答案和解析>>
科目: 來源: 題型:
【題目】某少數(shù)民族的刺繡有著悠久的歷史,下圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都由小正方形構成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第個圖形包含個小正方形.
(1)求出,,,并猜測的表達式;
(2)求證:.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解某校學生參加社區(qū)服務的情況,采用按性別分層抽樣的方法進行調查.已知該校共有學生960人,其中男生560人,從全校學生中抽取了容量為的樣本,得到一周參加社區(qū)服務的時間的統(tǒng)計數(shù)據(jù)好下表:
超過1小時 | 不超過1小時 | |
男 | 20 | 8 |
女 | 12 | m |
(Ⅰ)求,;
(Ⅱ)能否有95%的把握認為該校學生一周參加社區(qū)服務時間是否超過1小時與性別有關?
(Ⅲ)以樣本中學生參加社區(qū)服務時間超過1小時的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學生中隨機調查6名學生,試估計6名學生中一周參加社區(qū)服務時間超過1小時的人數(shù).
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】某地區(qū)某農產品近幾年的產量統(tǒng)計如表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代碼t | 1 | 2 | 3 | 4 | 5 | 6 |
年產量y(萬噸) | 6.6 | 6.7 | 7 | 7.1 | 7.2 | 7.4 |
(Ⅰ)根據(jù)表中數(shù)據(jù),建立關于的線性回歸方程;
(Ⅱ)根據(jù)線性回歸方程預測2019年該地區(qū)該農產品的年產量.
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:,.(參考數(shù)據(jù):,計算結果保留小數(shù)點后兩位)
查看答案和解析>>
科目: 來源: 題型:
【題目】某地區(qū)高考實行新方案,規(guī)定:語文、數(shù)學和英語是考生的必考科目,考生還須從物理、化學、生物、歷史、地理和政治六個科目中選取三個科目作為選考科目,若一名學生從六個科目中選出了三個科目作為選考科目,則稱該學生的選考方案確定;否則,稱該學生選考方案待確定.例如,學生甲選擇“物理、化學和生物”三個選考科目,則學生甲的選考方案確定,“物理、化學和生物”為其選考方案.
某學校為了了解高一年級420名學生選考科目的意向,隨機選取30名學生進行了一次調查,統(tǒng)計選考科目人數(shù)如下表:
性別 | 選考方案確定情況 | 物理 | 化學 | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有8人 | 8 | 8 | 4 | 2 | 1 | 1 |
選考方案待確定的有6人 | 4 | 3 | 0 | 1 | 0 | 0 | |
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
選考方案待確定的有6人 | 5 | 4 | 1 | 0 | 0 | 1 |
(Ⅰ)估計該學校高一年級選考方案確定的學生中選考生物的學生有多少人?
(Ⅱ)假設男生、女生選擇選考科目是相互獨立的.從選考方案確定的8位男生隨機選出1人,從選考方案確定的10位女生中隨機選出1人,試求該男生和該女生的選考方案中都含有歷史科目的概率;
(Ⅲ)從選考方案確定的8名男生隨機選出2名,設隨機變量兩名男生選考方案相同時,兩名男生選考方案不同時,求的分布列及數(shù)學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】關于函數(shù)有下述四個結論:①若,則;②的圖象關于點對稱;③函數(shù)在上單調遞增;④的圖象向右平移個單位長度后所得圖象關于軸對稱.其中所有正確結論的編號是( )
A.①②④B.①②C.③④D.②④
查看答案和解析>>
科目: 來源: 題型:
【題目】某大學進行自主招生時,需要進行邏輯思維和閱讀表達兩項能力的測試.學校對參加測試的200名學生的邏輯思維成績、閱讀表達成績以及這兩項的總成績進行了排名.其中甲、乙、丙三位同學的排名情況如下圖所示:
得出下面四個結論:
①甲同學的邏輯排名比乙同學的邏輯排名更靠前
②乙同學的邏輯思維成績排名比他的閱讀表達成績排名更靠前
③甲、乙、丙三位同學的邏輯思維成績排名中,甲同學更靠前
④甲同學的閱讀表達成績排名比他的邏輯思維成績排名更靠前
則所有正確結論的序號是_________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com