科目: 來源: 題型:
【題目】已知函數(shù)f(x)=|ax-2|+lnx(其中a為常數(shù))
(1)若a=0,求函數(shù)g(x)=的極值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)令F(x)=f(x)-,當a≥2時,判斷函數(shù)F(x)在(0,1]上零點的個數(shù),并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】橢圓: 的左右焦點分別為, ,左右頂點分別為, , 為橢圓上的動點(不與, 重合),且直線與的斜率的乘積為.
(1)求橢圓的方程;
(2)過作兩條互相垂直的直線與(均不與軸重合)分別與橢圓交于, , , 四點,線段、的中點分別為、,求證:直線過定點,并求出該定點坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C1:+=1(a>b>0)的右焦點F(1,0),右準線l:x=4.圓C2:x2+y2=b2.A、B為橢圓上不同的兩點,AB中點為M.
(1)求橢圓C1的方程;
(2)若直線AB過F點,直線OM交l于N點,求證:NF⊥AB;
(3)若直線AB與圓C2相切,求原點O到AB中垂線的最大距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知圓C:x2+y2-4x=0及點A(-1,0),B(1,2)
(1)若直線l平行于AB,與圓C相交于M,N兩點,MN=AB,求直線l的方程;
(2)若圓C上存在兩個點P,使得PA2+PB2=a(a>4),求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】重慶市推行“共享吉利博瑞車”服務,租用該車按行駛里程加用車時間收費,標準是“1元/公里0.2元/分鐘”.剛在重慶參加工作的小劉擬租用“共享吉利博瑞車”上下班,同單位的鄰居老李告訴他:“上下班往返總路程雖然只有10公里,但偶爾開車上下班總共也需花費大約1小時”,并將自己近50天的往返開車的花費時間情況統(tǒng)計如表:
將老李統(tǒng)計的各時間段頻率視為相應概率,假定往返的路程不變,而且每次路上開車花費時間視為用車時間.
(1)試估計小劉每天平均支付的租車費用(每個時間段以中點時間計算);
(2)小劉認為只要上下班開車總用時不超過45分鐘,租用“共享吉利博瑞車”為他該日的“最優(yōu)選擇”,小劉擬租用該車上下班2天,設其中有天為“最優(yōu)選擇”,求的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com