科目: 來源: 題型:
【題目】南康某服裝廠擬在年舉行促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費用萬元滿足.已知年生產(chǎn)該產(chǎn)品的固定投入為萬元,每生產(chǎn)萬件該產(chǎn)品需要再投入萬元.廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的倍(產(chǎn)品成本包括固定投入和再投入兩部分資金,不包括促銷費用).
(1)將年該產(chǎn)品的利潤萬元表示為年促銷費用萬元的函數(shù);
(2)該服裝廠年的促銷費用投入多少萬元時,利潤最大?
查看答案和解析>>
科目: 來源: 題型:
【題目】函數(shù)在一個周期內(nèi)的圖象如圖所示,A為圖象的最高點,B,C為的圖象與x軸的交點,且為等邊三角形.將函數(shù)的圖象上各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍后,再向右平移個單位,得到函數(shù)的圖象.
(1)求函數(shù)的解析式;
(2)若不等式對任意恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解某校學(xué)生參加社區(qū)服務(wù)的情況,采用按性別分層抽樣的方法進(jìn)行調(diào)查.已知該校共有學(xué)生960人,其中男生560人,從全校學(xué)生中抽取了容量為的樣本,得到一周參加社區(qū)服務(wù)的時間的統(tǒng)計數(shù)據(jù)如下表:
(1)求,;
(2)能否有的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時間是否超過1小時與性別有關(guān)?
附:
.
查看答案和解析>>
科目: 來源: 題型:
【題目】2018年2月25日第23屆冬季奧運會在韓國平昌閉幕,中國以1金6銀2銅的成績結(jié)束本次冬奧會的征程.某校體育愛好者協(xié)會在高三年級某班進(jìn)行了“本屆冬奧會中國隊表現(xiàn)”的滿意度調(diào)查(結(jié)果只有“滿意”和“不滿意”兩種),按分層抽樣從被調(diào)查的學(xué)生中隨機(jī)抽取了11人,具體的調(diào)查結(jié)果如下表:
某班 | 滿意 | 不滿意 |
男生 | 2 | 3 |
女生 | 4 | 2 |
(Ⅰ)若該班女生人數(shù)比男生人數(shù)多4人,求該班男生人數(shù)和女生人數(shù)
(Ⅱ)在該班全體學(xué)生中隨機(jī)抽取一名學(xué)生,由以上統(tǒng)計數(shù)據(jù)估計該生持滿意態(tài)度的概率;
(Ⅲ)若從該班調(diào)查對象中隨機(jī)選取2人進(jìn)行追蹤調(diào)查,記選中的2人中對“本屆冬奧會中國隊表現(xiàn)”滿意的人數(shù)為,求隨機(jī)變量的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,直線過點且傾斜角為.
(1)求曲線的直角坐標(biāo)方程和直線的參數(shù)方程;
(2)設(shè)直線與曲線交于, 兩點,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某大型工廠有6臺大型機(jī)器,在1個月中,1臺機(jī)器至多出現(xiàn)1次故障,且每臺機(jī)器是否出現(xiàn)故障是相互獨立的,出現(xiàn)故障時需1名工人進(jìn)行維修,每臺機(jī)器出現(xiàn)故障的概率為.已知1名工人每月只有維修2臺機(jī)器的能力(若有2臺機(jī)器同時出現(xiàn)故障,工廠只有1名維修工人,則該工人只能逐臺維修,對工廠的正常運行沒有任何影響),每臺機(jī)器不出現(xiàn)故障或出現(xiàn)故障時能及時得到維修,就能使該廠獲得10萬元的利潤,否則將虧損2萬元.該工廠每月需支付給每名維修工人1萬元的工資.
(1)若每臺機(jī)器在當(dāng)月不出現(xiàn)故障或出現(xiàn)故障時,有工人進(jìn)行維修(例如:3臺大型機(jī)器出現(xiàn)故障,則至少需要2名維修工人),則稱工廠能正常運行.若該廠只有1名維修工人,求工廠每月能正常運行的概率;
(2)已知該廠現(xiàn)有2名維修工人.
(。┯浽搹S每月獲利為萬元,求的分布列與數(shù)學(xué)期望;
(ⅱ)以工廠每月獲利的數(shù)學(xué)期望為決策依據(jù),試問該廠是否應(yīng)再招聘1名維修工人?
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)橢圓()的離心率為,圓與軸正半軸交于點,圓在點處的切線被橢圓截得的弦長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)圓上任意一點處的切線交橢圓于點,試判斷是否為定值?若為定值,求出該定值;若不是定值,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)在上的最小值;
(2)若對任意的恒成立.試求實數(shù)a的取值范圍;
(3)若時,求函數(shù)在上的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著全民健康運動的普及,每天一萬步已經(jīng)成為一種健康時尚,某學(xué)校為了教職工能夠健康工作,在全校范圍內(nèi)倡導(dǎo)“每天一萬步”健康走活動,學(xué)校界定一人一天走路不足4千步為“健步常人”,不少于16千步為“健步超人”,其他人為“健步達(dá)人”,學(xué)校隨機(jī)抽取抽查人36名教職工,其每天的走步情況統(tǒng)計如下:
現(xiàn)對抽查的36人采用分層抽樣的方式選出6人,從選出的6人中隨機(jī)抽取2人進(jìn)行調(diào)查.
(1)求這兩人健步走狀況一致的概率;
(2)求“健步超人”人數(shù)的分布列與數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com