科目: 來源: 題型:
【題目】已知拋物線,過點(diǎn)的直線與拋物線相切,設(shè)第一象限的切點(diǎn)為.
(1)求點(diǎn)的坐標(biāo);
(2)若過點(diǎn)的直線與拋物線相交于兩點(diǎn),圓是以線段為直徑的圓過點(diǎn),求直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在△中, , 分別為, 的中點(diǎn), 為的中點(diǎn), , .將△沿折起到△的位置,使得平面平面, 為的中點(diǎn),如圖2.
(1)求證: 平面;
(2)求證:平面平面;
(3)線段上是否存在點(diǎn),使得平面?說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】當(dāng)前,以“立德樹人”為目標(biāo)的課程改革正在有序推進(jìn).高中聯(lián)招對初三畢業(yè)學(xué)生進(jìn)行體育測試,是激發(fā)學(xué)生、家長和學(xué)校積極開展體育活動,保證學(xué)生健康成長的有效措施.程度2019年初中畢業(yè)生升學(xué)體育考試規(guī)定,考生必須參加立定跳遠(yuǎn)、擲實(shí)心球、1分鐘跳繩三項(xiàng)測試,三項(xiàng)考試滿分50分,其中立定跳遠(yuǎn)15分,擲實(shí)心球15分,1分鐘跳繩20分.某學(xué)校在初三上期開始時要掌握全年級學(xué)生每分鐘跳繩的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行測試,得到下邊頻率分布直方圖,且規(guī)定計(jì)分規(guī)則如下表:
每分鐘跳繩個數(shù) | ||||
得分 | 17 | 18 | 19 | 20 |
(1)請估計(jì)學(xué)生的跳繩個數(shù)的眾數(shù)、中位數(shù)和平均數(shù)(保留整數(shù));
(2)若從跳繩個數(shù)在、兩組中按分層抽樣的方法抽取9人參加正式測試,并從中任意選取2人,求兩人得分之和不大于34分的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在棱長為的正方體中,,分別是和的中點(diǎn).
()求異面直線與所成角的余弦值.
()在棱上是否存在一點(diǎn),使得二面角的大小為?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,已知曲線的參數(shù)方程為 為參數(shù)以原點(diǎn)為極點(diǎn)x軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為:,直線的極坐標(biāo)方程為.
(Ⅰ)寫出曲線的極坐標(biāo)方程,并指出它是何種曲線;
(Ⅱ)設(shè)與曲線交于兩點(diǎn),與曲線交于兩點(diǎn),求四邊形面積的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方體的棱長為a,分別是棱、的中點(diǎn),過點(diǎn)的平面分別與棱、交于點(diǎn),設(shè),,給出以下四個命題:
(1)平面與平面所成角的最大值為;
(2)四邊形的面積的最小值為;
(3)四棱錐的體積為;
(4)點(diǎn)到平面的距離的最大值為,
其中正確的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com