相關(guān)習(xí)題
 0  262680  262688  262694  262698  262704  262706  262710  262716  262718  262724  262730  262734  262736  262740  262746  262748  262754  262758  262760  262764  262766  262770  262772  262774  262775  262776  262778  262779  262780  262782  262784  262788  262790  262794  262796  262800  262806  262808  262814  262818  262820  262824  262830  262836  262838  262844  262848  262850  262856  262860  262866  262874  266669 

科目: 來源: 題型:

【題目】已知橢圓,記為與原點距離等于的全體直線所成的集合.問:是否存在常數(shù),使得對任意的直線,均存在、,、分別過 與橢圓的交點,且有?并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】某科室安排甲、乙、丙、丁四人國慶節(jié)放假期間(共放假八天)的值班表.已知甲、乙各值班四天,甲不能在第一天值班且甲、乙不在同一天值班;丙需要值班三天,且不能連續(xù)值班;丁需要值班五天;規(guī)定每天必須兩人值班.則符合條件的不同方案共有( )種.

A. 400 B. 700 C. 840 D. 960

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)是定義在的偶函數(shù),且.當(dāng)時,,若方程300個不同的實數(shù)根,則實數(shù)m的取值范圍為(

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】在人群流量較大的街道,有一中年人吆喝送錢,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質(zhì)地完成相同),旁邊立著一塊小黑板寫道:

摸球方法:從袋中隨機摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢.

1)摸出的3個球為白球的概率是多少?

2)摸出的3個球為2個黃球1個白球的概率是多少?

3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知為直平行六面體.命題為正方體;命題的任意體對角線與其不相交的面對角線垂直.則命題是命題的( )條件 .

A. 充分不必要 B. 必要不充分 C. 充分必要 D. 既不充分也不必要

查看答案和解析>>

科目: 來源: 題型:

【題目】在工業(yè)生產(chǎn)中,對一正三角形薄鋼板(厚度不計)進(jìn)行裁剪可以得到一種梯形鋼板零件,現(xiàn)有一邊長為3(單位:米)的正三角形鋼板(如圖),沿平行于邊的直線剪去,得到所需的梯形鋼材,記這個梯形鋼板的周長為 (單位:米),面積為(單位:平方米).

(1)求梯形的面積關(guān)于它的周長的函數(shù)關(guān)系式;

(2)若在生產(chǎn)中,梯形的面積與周長之比(即)達(dá)到最大值時,零件才能符合使用要求,試確定這個梯形的周長為多時,該零件才可以在生產(chǎn)中使用?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時,求函數(shù)的最小值;

(Ⅱ)討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】從含有兩件正品a1,a2和一件次品b13件產(chǎn)品中每次任取1件,

每次取出后不放回,連續(xù)取兩次.

1)求取出的兩件產(chǎn)品中恰有一件次品的概率;

2)如果將每次取出后不放回這一條件換成每次取出后放回,則取出的兩件產(chǎn)品中恰有一件次品的概率是多少?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)是偶函數(shù),若方程在區(qū)間(其中為自然對數(shù)的底)上有兩個不相等的實數(shù)根,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】科赫曲線是一種外形像雪花的幾何曲線,一段科赫曲線可以通過下列操作步驟構(gòu)造得到,任畫一條線段,然后把它均分成三等分,以中間一段為邊向外作正三角形,并把中間一段去掉,這樣,原來的一條線段就變成了4條小線段構(gòu)成的折線,稱為“一次構(gòu)造”;用同樣的方法把每條小線段重復(fù)上述步驟,得到16條更小的線段構(gòu)成的折線,稱為“二次構(gòu)造”,…,如此進(jìn)行“次構(gòu)造”,就可以得到一條科赫曲線.若要在構(gòu)造過程中使得到的折線的長度達(dá)到初始線段的1000倍,則至少需要通過構(gòu)造的次數(shù)是( .(取,

A.16B.17C.24D.25

查看答案和解析>>

同步練習(xí)冊答案