科目: 來源: 題型:
【題目】已知函數(shù)f(x)g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)+g(x)=23x.
(1)證明:f(x)-g(x)=23-x,并求函數(shù)f(x),g(x)的解析式;
(2)解關(guān)于x不等式:g(x2+2x)+g(x-4)>0;
(3)若對任意x∈R,不等式f(2x)≥mf(x)-4恒成立,求實數(shù)m的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的極值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)判斷函數(shù)是否存在公切線,如果不存在,請說明理由,如果存在請指出公切線的條數(shù)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線與雙曲線有公共焦點,點是曲線在第一象限的交點,且.
(Ⅰ)求雙曲線的方程;
(Ⅱ)以雙曲線的另一焦點為圓心的圓與直線相切,圓.過點作互相垂直且分別與圓、圓相交的直線和,設(shè)被圓截得的弦長為,被圓截得的弦長為,問:是否為定值?如果是,請求出這個定值;如果不是,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率為,點在橢圓上.
()求橢圓的方程.
()設(shè)動直線與橢圓有且僅有一個公共點,判斷是否存在以原點為圓心的圓,滿足此圓與相交于兩點, (兩點均不在坐標軸上),且使得直線、的斜率之積為定值?若存在,求此圓的方程;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】學(xué)校書店新進了一套精品古典四大名著:《紅樓夢》、《三國演義》、《西游記》、《水滸傳》共四本書,每本名著數(shù)量足夠多,今有五名同學(xué)去書店買書,由于價格較高,五名同學(xué)打算每人只選擇一本購買.
(1)求“每本書都有同學(xué)買到”的概率;
(2)求“對于每個同學(xué),均存在另一個同學(xué)與其購買的書相同”的概率;
(3)記X為五位同學(xué)購買相同書的個數(shù)的最大值,求X的分布列和數(shù)學(xué)期望E(X).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,四棱錐的底面是邊長為1的菱形,,
E是CD的中點,PA底面ABCD,.
(I)證明:平面PBE平面PAB;
(II)求二面角A—BE—P和的大。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,A、B分別是橢圓的左、右端點,F是橢圓的右焦點,點P在橢圓上,且位于x軸上方,PA⊥PF.
(1)點P的坐標;
(2)設(shè)M是橢圓長軸AB上的一點,M到直線AP的距離等于MB,求橢圓上的點到點M的距離d的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某連鎖餐廳新店開業(yè)打算舉辦一次食品交易會,招待新老顧客試吃項目經(jīng)理通過查閱最近5次食品交易會參會人數(shù)x(萬人)與餐廳所用原材料數(shù)量y(袋),得到如下統(tǒng)計表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
參會人數(shù)(萬人) | 13 | 9 | 8 | 10 | 12 |
原材料(袋) | 32 | 23 | 18 | 24 | 28 |
(1)根據(jù)所給5組數(shù)據(jù),求出y關(guān)于x的線性回歸方程
(2)已知購買原材料的費用C(元)與數(shù)量(袋)的關(guān)系為,投入使用的每袋原材料相應(yīng)的銷售收入為700元,多余的原材料只能無償返還,據(jù)悉本次交易大會大約有13萬人參加,根據(jù)(1)中求出的線性回歸方程,預(yù)測餐廳應(yīng)購買多少袋原材料才能獲得最大利潤,最大利潤是多少?(注:利潤L=銷售收入-原材料費用)
參考公式:,
參考數(shù)據(jù):.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com