科目: 來源: 題型:
【題目】已知橢圓的長軸長為6,且橢圓與圓的公共弦長為.
(1)求橢圓的方程;
(2)過點P(0,1)作斜率為的直線與橢圓交于兩點,,試判斷在軸上是否存在點,使得為以為底邊的等腰三角形,若存在,求出點的橫坐標的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數是定義在上的偶函數,且當時, .現(xiàn)已畫出函數在軸左側的圖象,如圖所示,并根據圖象:
(1)直接寫出函數, 的增區(qū)間;
(2)寫出函數, 的解析式;
(3)若函數, ,求函數的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著“互聯(lián)網+交通”模式的迅猛發(fā)展,“共享自行車”在很多城市相繼出現(xiàn).某運營公司為了了解某地區(qū)用戶對其所提供的服務的滿意度,隨機調查了40個用戶,得到用戶的滿意度評分如下:
用戶編號 | 評分 | 用戶編號 | 評分 | 用戶編號 | 評分 | 用戶編號 | 評分 |
01 | 78 | 11 | 88 | 21 | 79 | 31 | 93 |
02 | 73 | 12 | 86 | 22 | 83 | 32 | 78 |
03 | 81 | 13 | 95 | 23 | 72 | 33 | 75 |
04 | 92 | 14 | 76 | 24 | 74 | 34 | 81 |
05 | 95 | 15 | 97 | 25 | 91 | 35 | 84 |
06 | 85 | 16 | 78 | 26 | 66 | 36 | 77 |
07 | 79 | 17 | 88 | 27 | 80 | 37 | 81 |
08 | 84 | 18 | 82 | 28 | 83 | 38 | 76 |
09 | 63 | 19 | 76 | 29 | 74 | 39 | 85 |
10 | 86 | 20 | 89 | 30 | 82 | 40 | 89 |
現(xiàn)用隨機數法讀取用戶編號,且從第2行第6列的數開始向右讀,從40名用戶中抽取容量為10的樣本.(下面是隨機數表第1行第至第5行)
95 33 95 22 00 18 74 72 00 18 38 79 58 69 32
81 76 80 16 92 04 80 44 25 39 91 03 69 79 83
54 31 62 27 32 94 07 53 89 35 96 35 23 79 18
05 98 90 07 35 46 40 62 98 80 54 97 20 56 95
(1)請你列出抽到的10個樣本的評分數據;
(2)計算所抽到的10個樣本的均值和方差;
(3)在(2)條件下,若用戶的滿意度評分在之間,則滿意度等級為“級”.試應用樣本估計總體的思想,根據所抽到的10個樣本,估計該地區(qū)滿意度等級為“級”的用戶所占的百分比是多少?(參考數據:)
查看答案和解析>>
科目: 來源: 題型:
【題目】某家庭記錄了未使用節(jié)水龍頭50天的日用水量數據(單位:m3)和使用了節(jié)水龍頭50天的日用水量數據,得到頻數分布表如下:
未使用節(jié)水龍頭50天的日用水量頻數分布表
日用 水量 | |||||||
頻數 | 1 | 3 | 2 | 4 | 9 | 26 | 5 |
使用了節(jié)水龍頭50天的日用水量頻數分布表
日用 水量 | ||||||
頻數 | 1 | 5 | 13 | 10 | 16 | 5 |
(1)在答題卡上作出使用了節(jié)水龍頭50天的日用水量數據的頻率分布直方圖:
(2)估計該家庭使用節(jié)水龍頭后,日用水量小于0.35 m3的概率;
(3)估計該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計算,同一組中的數據以這組數據所在區(qū)間中點的值作代表.)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等差數列{an}滿足a3=2,前3項和為S3=.
(1)求{an}的通項公式;
(2)設等比數列{bn}滿足b1=a1,b4=a15,求{bn}的前n項和Tn.
查看答案和解析>>
科目: 來源: 題型:
【題目】某旅游愛好者計劃從3個亞洲國家A1,A2,A3和3個歐洲國家B1,B2,B3中選擇2個國家去旅游.
(1)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;
(2)若從亞洲國家和歐洲國家中各選1個,求這兩個國家包括A1,但不包括B1的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據一組樣本數據(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是
A. y與x具有正的線性相關關系
B. 回歸直線過樣本點的中心(,)
C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com