科目: 來源: 題型:
【題目】一個20行若干列的0,1數(shù)陣滿足:各列互不相同且任意兩列中同一行都取1的行數(shù)不超過2.求當列數(shù)最多時,數(shù)陣中1的個數(shù)的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某建筑物的基本單元可近似地按以下方法構作:先在地平面a內作菱形ABCD,邊長為1,∠BAD=60°,再在a的上方,分別以△ABD與△CBD為底面安裝上相同的正棱錐P-ABD與Q-CBD,∠APB=90°.
(1)求二面角P-BD-Q的余弦值;
(2)求點P到平面QBD的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=4sincos x+.
(1)求函數(shù)f(x)的最小正周期和單調遞增區(qū)間;
(2)若函數(shù)g(x)=f(x)-m區(qū)間在上有兩個不同的零點x1,x2,求實數(shù)m的取值范圍,并計算tan(x1+x2)的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知公差不等于的正項等差數(shù)列的前項和為,遞增等比數(shù)列的前項和為,,,,.
(1)求滿足,的的最小值;
(2)求數(shù)列的前項和.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正多面體共有5種,即正四面體、正六面體、正八面體、正十二面體和正二十面體.任一個正多面體都有內切球和外接球,若一個半徑為1的球既是一個正四面體的內切球,又是一個正六面體的外接球,則這兩個多面體的頂點之間的最短距離為( )
A.-1B.1C.2-1D.2
查看答案和解析>>
科目: 來源: 題型:
【題目】已知集合是滿足下列性質的函數(shù)的全體:在定義域內存在實數(shù),使得成立.
(1)已知函數(shù),判斷 函數(shù)是否屬于集合;
(2)若函數(shù)屬于集合,試求實數(shù)的取值范圍;
(3) 證明函數(shù)屬于集合.
查看答案和解析>>
科目: 來源: 題型:
【題目】如表提供了工廠技術改造后某種型號設備的使用年限和所支出的維修費(萬元)的幾組對照數(shù)據(jù):
(年) | 2 | 3 | 4 | 5 | 6 |
(萬元) | 1 | 2.5 | 3 | 4 | 4.5 |
參考公式:,.
(1)若知道對呈線性相關關系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;
(2)已知該工廠技術改造前該型號設備使用10年的維修費用為9萬元,試根據(jù)(1)求出的線性回歸方程,預測該型號設備技術改造后,使用10年的維修費用能否比技術改造前降低?
查看答案和解析>>
科目: 來源: 題型:
【題目】我校高一年級某研究小組經(jīng)過調查發(fā)現(xiàn):提高北環(huán)隧道的車輛通行能力可有效改善交通狀況,在一般情況下,隧道內的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米,車流密度指每千米道路上車輛的數(shù)量)的函數(shù).當隧道內的車流密度達到210輛/千米時,將造成堵塞,此時車流速度為0;當車流密度不超過30輛/千米時,車流速度為60千米/小時,研究表明:當時,車流速度是車流密度的一次函數(shù).
(1)求函數(shù)的表達式;
(2)當車流密度為多大時,車流量(單位時間內通過某觀測點的車輛數(shù),單位:輛/小時) 可以達到最大,并求出最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com