相關習題
 0  263226  263234  263240  263244  263250  263252  263256  263262  263264  263270  263276  263280  263282  263286  263292  263294  263300  263304  263306  263310  263312  263316  263318  263320  263321  263322  263324  263325  263326  263328  263330  263334  263336  263340  263342  263346  263352  263354  263360  263364  263366  263370  263376  263382  263384  263390  263394  263396  263402  263406  263412  263420  266669 

科目: 來源: 題型:

【題目】20202月,全國掀起了“停課不停學”的熱潮,各地教師通過網(wǎng)絡直播、微課推送等多種方式來指導學生線上學習.為了調(diào)查學生對網(wǎng)絡課程的熱愛程度,研究人員隨機調(diào)查了相同數(shù)量的男、女學生,發(fā)現(xiàn)有的男生喜歡網(wǎng)絡課程,有的女生不喜歡網(wǎng)絡課程,且有的把握但沒有的把握認為是否喜歡網(wǎng)絡課程與性別有關,則被調(diào)查的男、女學生總數(shù)量可能為(

附:,其中.

k

A.130B.190C.240D.250

查看答案和解析>>

科目: 來源: 題型:

【題目】

在平面直角坐標系中,N為圓C上的一動點,點D1,0),點MDN的中點,點P在線段CN上,且.

)求動點P表示的曲線E的方程;

)若曲線Ex軸的交點為,當動點PA,B不重合時,設直線的斜率分別為,證明:為定值;

查看答案和解析>>

科目: 來源: 題型:

【題目】已知雙曲線C:(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,P為雙曲線C上的一點,線段PF1與y軸的交點M恰好是線段PF1的中點,,其中O為坐標原點,則雙曲線C的漸近線的斜率與離心率分別是( )

A. ±1, B. 1, C. ±2, D. 2,

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=|x+1|.

(1)若不等式f(x)≥|2x+1|1的解集為A,且,求實數(shù)t的取值范圍;

(2)在(1)的條件下,若,證明:f(ab)>f(a)f(b).

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標原點為極點,x軸的非負半軸為極軸且取相同的單位長度建立極坐標系,已知曲線C的極坐標方程為,且直線l經(jīng)過曲線C的左焦點F.

(1)求直線l的普通方程;

(2)設曲線C的內(nèi)接矩形的周長為L,求L的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)(a>0).

(1)討論函數(shù)f(x)的單調(diào)性;

(2)證明:對任意x[1,+∞),有f(x)≤2x-a2

查看答案和解析>>

科目: 來源: 題型:

【題目】將邊長為的正方形沿對角線折疊,使得平面平面,平面,的中點,且

(1)求證:

(2)求二面角的大。

查看答案和解析>>

科目: 來源: 題型:

【題目】某校高二期中考試后,教務處計劃對全年級數(shù)學成績進行統(tǒng)計分析,從男、女生中各隨機抽取100名學生,分別制成了男生和女生數(shù)學成績的頻率分布直方圖,如圖所示.

(1)若所得分數(shù)大于等于80分認定為優(yōu)秀,求男、女生優(yōu)秀人數(shù)各有多少人?

(2)在(1)中的優(yōu)秀學生中用分層抽樣的方法抽取5人,從這5人中任意任取2人,求至少有1名男生的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點O為坐標原點,橢圓C:(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為,點I,J分別是橢圓C的右頂點、上頂點,IOJ的邊IJ上的中線長為

(1)求橢圓C的標準方程;

(2)過點H(-2,0)的直線交橢圓C于A,B兩點,若AF1⊥BF1,求直線AB的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,∠BAC=120°,AC=AB=2,AA1=3.

(1)求三棱柱ABC-A1B1C1的體積;

(2)若M是棱BC的一個靠近點C的三等分點,求證:AM平面ABB1A1

查看答案和解析>>

同步練習冊答案