科目: 來源: 題型:
【題目】已知函數(shù)f(x)=(kx+)ex﹣2x,若f(x)<0的解集中有且只有一個正整數(shù),則實數(shù)k的取值范圍為 ( )
A. [ ,)B. (,]
C. [)D. [)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:曲線表示雙曲線;:曲線表示焦點在軸上的橢圓.
(1)分別求出條件中的實數(shù)的取值范圍;
(2)甲同學(xué)認(rèn)為“是的充分條件”,乙同學(xué)認(rèn)為“是的必要條件”,請判斷兩位同學(xué)的說法是否正確,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某企業(yè)用180萬元購買一套新設(shè)備,該套設(shè)備預(yù)計平均每年能給企業(yè)帶來100萬元的收入,為了維護(hù)設(shè)備的正常運(yùn)行,第一年需要各種維護(hù)費用10萬元,且從第二年開始,每年比上一年所需的維護(hù)費用要增加10萬元
(1)求該設(shè)備給企業(yè)帶來的總利潤(萬元)與使用年數(shù)的函數(shù)關(guān)系;
(2)試計算這套設(shè)備使用多少年,可使年平均利潤最大?年平均利潤最大為多少萬元?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線上一點到焦點的距離,傾斜角為的直線經(jīng)過焦點,且與拋物線交于兩點、.
(1)求拋物線的標(biāo)準(zhǔn)方程及準(zhǔn)線方程;
(2)若為銳角,作線段的中垂線交軸于點.證明:為定值,并求出該定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】古希臘雅典學(xué)派算學(xué)家歐道克薩斯提出了“黃金分割”的理論,利用尺規(guī)作圖可畫出己知線段的黃金分割點,具體方法如下:(l)取線段AB=2,過點B作AB的垂線,并用圓規(guī)在垂線上截取BC=AB,連接AC;(2)以C為圓心,BC為半徑畫弧,交AC于點D;(3)以A為圓心,以AD為半徑畫弧,交AB于點E.則點E即為線段AB的黃金分割點.若在線段AB上隨機(jī)取一點F,則使得BE≤AF≤AE的概率約為( 。▍⒖紨(shù)據(jù):2.236)
A. 0.236B. 0.382C. 0.472D. 0.618
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中已知A(4,O)、B(0,2)、C(-1,0)、D(0,-2),點E在線段AB(不含端點)上,點F在線段CD上,E、O、F三點共線.
(1)若F為線段CD的中點,證明:;
(2)“若F為線段CD的中點,則”的逆命題是否成立?說明理由;
(3)設(shè),求的值。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的左.右焦點分別為,短軸兩個端點為,且四邊形的邊長為 的正方形.
(Ⅰ)求橢圓的方程;
(Ⅱ)若,分別是橢圓長軸的左,右端點,動點滿足,連結(jié),交橢圓于點.證明: 的定值;
(Ⅲ)在(Ⅱ)的條件下,試問軸上是否存在異于點,的定點,使得以為直徑的圓恒過直線,的交點,若存在,求出點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】唐三彩,中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術(shù)的特點,在中國文化中占有重要的歷史地位,在中國的陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有多年的歷史,對唐三彩的復(fù)制和仿制工藝,至今也有百余年的歷史.某陶瓷廠在生產(chǎn)過程中,對仿制的件工藝品測得重量(單位:)數(shù)據(jù)如下表:
分組 | 頻數(shù) | 頻率 |
合計 |
(1)求出頻率分布表中實數(shù),的值;
(2)若從仿制的件工藝品重量范圍在的工藝品中隨機(jī)抽選件,求被抽選件工藝品重量均在范圍中的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等軸雙曲線的兩個焦點、在直線上,線段的中點是坐標(biāo)原點,且雙曲線經(jīng)過點.
(1)若已知下列所給的三個方程中有一個是等軸雙曲線的方程:①;②;③.請推理判斷哪個是等軸雙曲線的方程,并求出此雙曲線的實軸長;
(2)現(xiàn)要在等軸雙曲線上選一處建一座碼頭,向、兩地轉(zhuǎn)運(yùn)貨物.經(jīng)測算,從到、從到修建公路的費用都是每單位長度萬元,則碼頭應(yīng)建在何處,才能使修建兩條公路的總費用最低?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com