科目: 來(lái)源: 題型:
【題目】已知某超市2018年12個(gè)月的收入與支出數(shù)據(jù)的折線圖如圖所示:
根據(jù)該折線圖可知,下列說(shuō)法錯(cuò)誤的是( )
A. 該超市2018年的12個(gè)月中的7月份的收益最高
B. 該超市2018年的12個(gè)月中的4月份的收益最低
C. 該超市2018年1-6月份的總收益低于2018年7-12月份的總收益
D. 該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長(zhǎng)了90萬(wàn)元
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是正方形,每條側(cè)棱的長(zhǎng)都是底面邊長(zhǎng)的倍,為側(cè)棱上的點(diǎn).
(1)求證:;
(2)若平面,求二面角的大;
(3)在(2)的條件下,側(cè)棱上是否存在一點(diǎn),使得平面.若存在,求的值;若不存在,試說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】國(guó)際奧委會(huì)將于2017年9月15日在秘魯利馬召開(kāi)130次會(huì)議決定2024年第33屆奧運(yùn)會(huì)舉辦地。目前德國(guó)漢堡、美國(guó)波士頓等申辦城市因市民擔(dān)心賽事費(fèi)用超支而相繼退出。某機(jī)構(gòu)為調(diào)查我國(guó)公民對(duì)申辦奧運(yùn)會(huì)的態(tài)度,選了某小區(qū)的100位居民調(diào)查結(jié)果統(tǒng)計(jì)如下:
(1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫(xiě)完整;
(2)能否在犯錯(cuò)誤的概率不超過(guò)5%的前提下認(rèn)為不同年齡與支持申辦奧運(yùn)無(wú)關(guān)?
(3)已知在被調(diào)查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現(xiàn)從這5名女性中隨機(jī)抽取3人,求至多有1位教師的概率.
附: , .
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知分別為的三內(nèi)角A,B,C的對(duì)邊,其面積,在等差數(shù)列中,,公差.?dāng)?shù)列的前n項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某地區(qū)不同身高的未成年男孩的體重平均值如下表:
身高 | 60 | 70 | 80 | 90 | 100 |
體重 | 6.13 | 7.90 | 9.99 | 12.15 | 15.02 |
已知與之間存在很強(qiáng)的線性相關(guān)性,
(1)據(jù)此建立與之間的回歸方程;
(2)若體重超過(guò)相同身高男性體重平均值的1.2倍為偏胖,低于0.8倍為偏瘦,那么這個(gè)地區(qū)一名身高體重為的在校男生的體重是否正常?
參考數(shù)據(jù):,,
附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線中的斜率和截距的最小二乘估計(jì)分別為,.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知集合 .對(duì)于,定義與之間的距離為.
(Ⅰ),寫(xiě)出所有的;
(Ⅱ)任取固定的元素,計(jì)算集合中元素個(gè)數(shù);
(Ⅲ)設(shè),中有個(gè)元素,記中所有不同元素間的距離的最小值為.證明: .
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】港珠澳大橋是中國(guó)建設(shè)史上里程最長(zhǎng),投資最多,難度最大的跨海橋梁項(xiàng)目,大橋建設(shè)需要許多橋梁構(gòu)件。從某企業(yè)生產(chǎn)的橋梁構(gòu)件中抽取件,測(cè)量這些橋梁構(gòu)件的質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間,,內(nèi)的頻率之比為.
(1)求這些橋梁構(gòu)件質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的頻率;
(2)用分層抽樣的方法在區(qū)間內(nèi)抽取一個(gè)容量為的樣本,將該樣本看成一個(gè)總體,從中任意抽取件橋梁構(gòu)件,求這件橋梁構(gòu)件都在區(qū)間內(nèi)的概率
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在四棱錐中,底面是平行四邊形,,側(cè)面底面,,, 分別為的中點(diǎn),點(diǎn)在線段上.
(Ⅰ)求證:直線平面;
(Ⅱ)若為的中點(diǎn),求平面與平面所成銳二面角的余弦值;
(Ⅲ)設(shè),當(dāng)為何值時(shí),直線與平面所成角的正弦值為,求的值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】(2014·長(zhǎng)春模擬)對(duì)甲、乙兩名自行車(chē)賽手在相同條件下進(jìn)行了6次測(cè)試,測(cè)得他們的最大速度(m/s)的數(shù)據(jù)如下表:
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
(1)畫(huà)出莖葉圖.
(2)分別求出甲、乙兩名自行車(chē)賽手最大速度(m/s)數(shù)據(jù)的平均數(shù)、方差,并判斷選誰(shuí)參加比賽更合適?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com