科目: 來源: 題型:
【題目】如圖,在棱長為2的正方體中, , , , 分別是棱, , , 的中點,點, 分別在棱, 上移動,且.
(1)當時,證明:直線平面;
(2)是否存在,使面與面所成的二面角為直二面角?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知曲線C的極坐標方程為ρ= ,直線l的參數(shù)方程為(t為參數(shù),0≤α<π).
(1)把曲線C的極坐標方程化為直角坐標方程,并說明曲線C的形狀;
(2)若直線l經(jīng)過點(1,0),求直線l被曲線C截得的線段AB的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣有兩個極值點.
(1)求實數(shù)a的取值范圍;
(2)若函數(shù)f(x)的兩個極值點分別為x1,x2,求證:x1+x2>2.
查看答案和解析>>
科目: 來源: 題型:
【題目】某電子科技公司由于產品采用最新技術,銷售額不斷增長,最近個季度的銷售額數(shù)據(jù)統(tǒng)計如下表(其中表示年第一季度,以此類推):
季度 | |||||
季度編號x | |||||
銷售額y(百萬元) |
(1)公司市場部從中任選個季度的數(shù)據(jù)進行對比分析,求這個季度的銷售額都超過千萬元的概率;
(2)求關于的線性回歸方程,并預測該公司的銷售額.
附:線性回歸方程:其中,
參考數(shù)據(jù):.
查看答案和解析>>
科目: 來源: 題型:
【題目】若對于曲線f(x)=-ex-x(e為自然對數(shù)的底數(shù))的任意切線l1,總存在曲線g(x)=ax+2cosx的切線l2,使得l1⊥l2,則實數(shù)a的取值范圍為________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓過點,且橢圓的離心率.
(1)求橢圓的標淮方程;
(2)直線過點且與橢圓相交于、兩點,橢圓的右頂點為,試判斷是否能為直角.若能為直角,求出直線的方程,若不行,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】從某企業(yè)生產的某種產品中抽取100件,測量這些產品的一項質量指標值.由測量表得到如下頻率分布直方圖
(1)補全上面的頻率分布直方圖(用陰影表示);
(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中間值作為代表,據(jù)此估計這種產品質量指標值服從正態(tài)分布Z(μ,σ2),其中μ近似為樣本平均值,σ2近似為樣本方差s2(組數(shù)據(jù)取中間值);
①利用該正態(tài)分布,求從該廠生產的產品中任取一件,該產品為合格品的概率;
②該企業(yè)每年生產這種產品10萬件,生產一件合格品利潤10元,生產一件不合格品虧損20元,則該企業(yè)的年利潤是多少?
參考數(shù)據(jù):=5.1,若Z~N(μ,σ2),則P(μ﹣σ,μ+σ)=0.6826,P(μ﹣2σ,μ+2σ)=0.9544.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,等邊△ABC中,AC=4,D是邊AC上的點(不與A,C重合),過點D作DE∥BC交AB于點E,沿DE將△ADE向上折起,使得平面ADE⊥平面BCDE,如圖2所示.
(1)若異面直線BE與AC垂直,確定圖1中點D的位置;
(2)證明:無論點D的位置如何,二面角D﹣AE﹣B的余弦值都為定值,并求出這個定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com