科目: 來源: 題型:
【題目】如圖,四棱錐的底面為直角梯形,,且,,,平面底面,為的中點,為等邊三角形,是棱上的一點,設(與不重合).
(1)若平面,求的值;
(2)當時,求二面角的大小.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知平面內(nèi)一動點()到點的距離與點到軸的距離的差等于1,
(1)求動點的軌跡的方程;
(2)過點的直線與軌跡相交于不同于坐標原點的兩點,求面積的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知某運動員每次投籃命中的概率低于,現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為( )
A.0.35B.0.25C.0.20D.0.15
查看答案和解析>>
科目: 來源: 題型:
【題目】祖暅(公元前5~6世紀)是我國齊梁時代的數(shù)學家,是祖沖之的兒子,他提出了一條原原理:“冪勢既同,則積不容異.”這里的“冪”指水平截面的面積,“勢”指高。這句話的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體體積相等。設由橢圓 所圍成的平面圖形繞 軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(稱為橢球體),課本中介紹了應用祖暅原理求球體體積公式的做法,請類比此法,求出橢球體體積,其體積等于( )
A. B.
C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】年央視大型文化節(jié)目《經(jīng)典詠流傳》的熱播,在全民中掀起了誦讀詩詞的熱潮,節(jié)目組為熱心觀眾給以獎勵,要從名觀眾中抽取名幸運觀眾.先用簡單隨機抽樣從人中剔除人,剩下的人再按系統(tǒng)抽樣方法抽取人,則在人中,每個人被抽取的可能性( )
A. 均不相等B. 都相等,且為
C. 不全相等D. 都相等,且為
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正三角形的邊長為,、、分別為各邊的中點,將△沿、、折疊,使、、三點重合,構(gòu)成三棱錐.
(1)求平面與底面所成二面角的余弦值;
(2)設點、分別在、上, (為變量) ;
①當為何值時,為異面直線與的公垂線段? 請證明你的結(jié)論
②設異面直線與所成的角為,異面直線與所成的角為,試求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程是
(Ⅰ)求直線的普通方程與曲線的直角坐標方程;
(Ⅱ)設直線與曲線相交于兩點,當時,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某地區(qū)不同身高的未成年男性的體重平均值如下表:
身高x(cm) | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 |
體重y(kg) | 6.13 | 7.90 | 9.99 | 12.15 | 15.02 | 17.50 | 20.92 | 26.86 | 31.11 |
已知與之間存在很強的線性相關(guān)性,
(Ⅰ)據(jù)此建立與之間的回歸方程;
(Ⅱ)若體重超過相同身高男性體重平均值的倍為偏胖,低于倍為偏瘦,那么這個地區(qū)一名身高體重為 的在校男生的體重是否正常?
參考數(shù)據(jù):
附:對于一組數(shù)據(jù),其回歸直線 中的斜率和截距的最小二乘估計分別為
查看答案和解析>>
科目: 來源: 題型:
【題目】現(xiàn)將甲、乙、丙、丁四個人安排到座位號分別是的四個座位上,他們分別有以下要求,
甲:我不坐座位號為和的座位;
乙:我不坐座位號為和的座位;
丙:我的要求和乙一樣;
。喝绻也蛔惶枮的座位,我就不坐座位號為的座位.
那么坐在座位號為的座位上的是( )
A. 甲B. 乙C. 丙D. 丁
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com