科目: 來源: 題型:
【題目】一個不透明的箱子中裝有大小形狀相同的5個小球,其中2個白球標號分別為,,3個紅球標號分別為,,,現(xiàn)從箱子中隨機地一次取出兩個球.
(1)求取出的兩個球都是白球的概率;
(2)求取出的兩個球至少有一個是白球的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著移動互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關的手機APP軟件層出不窮.現(xiàn)從某市使用A和B兩款訂餐軟件的商家中分別隨機抽取100個商家,對它們的“平均送達時間”進行統(tǒng)計,得到頻率分布直方圖如下.
(1)已知抽取的100個使用A款訂餐軟件的商家中,甲商家的“平均送達時間”為18分鐘,F(xiàn)從使用A款訂餐軟件的商家中“平均送達時間”不超過20分鐘的商家中隨機抽取3個商家進行市場調(diào)研,求甲商家被抽到的概率;
(2)試估計該市使用A款訂餐軟件的商家的“平均送達時間”的眾數(shù)及平均數(shù);
(3)如果以“平均送達時間”的平均數(shù)作為決策依據(jù),從A和B兩款訂餐軟件中選擇一款訂餐,你會選擇哪款?
查看答案和解析>>
科目: 來源: 題型:
【題目】某闖關游戲共有兩關,游戲規(guī)則:先闖第一關,當?shù)谝魂P闖過后,才能進入第二關,兩關都闖過,則闖關成功,且每關各有兩次闖關機會.已知闖關者甲第一關每次闖過的概率均為,第二關每次闖過的概率均為.假設他不放棄每次闖關機會,且每次闖關互不影響.
(1)求甲恰好闖關3次才闖關成功的概率;
(2)記甲闖關的次數(shù)為,求隨機變量的分布列和期望.。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,DC⊥平面ABC,,,,P、Q分別為AE,AB的中點.
(1)證明:平面.
(2)求異面直線與所成角的余弦值;
(3)求平面與平面所成銳二面角的大小。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的一個焦點為,上頂點為,原點O到直線的距離為.
(1)求橢圓C的標準方程;
(2)若點T在圓上,點A為橢圓的右頂點,是否存在過點A的直線l交橢圓C于點B(異于點A),使得成立?若存在,求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和的直角坐標方程;
(2)已知曲線的極坐標方程為,,,點是曲線與的交點,點是曲線與的交點,且,均異于原點,且,求實數(shù)的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對某種產(chǎn)品的研究投入.為了對新研發(fā)的產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格試銷,得到一組檢測數(shù)據(jù)如表所示:
試銷價格(元) | ||||||
產(chǎn)品銷量(件) |
已知變量,具有線性相關關系,現(xiàn)有甲、乙、丙三位同學通過計算求得回歸直線方程分別為:甲/span>;乙;丙,其中有且僅有一位同學的計算結(jié)果是正確的.
(1)試判斷誰的計算結(jié)果正確?求回歸方程。
(2)若由線性回歸方程得到的估計數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過1,則該檢測數(shù)據(jù)是“理想數(shù)據(jù)”.現(xiàn)從檢測數(shù)據(jù)中隨機抽取3個,求“理想數(shù)據(jù)”的個數(shù)的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com