相關(guān)習(xí)題
 0  263839  263847  263853  263857  263863  263865  263869  263875  263877  263883  263889  263893  263895  263899  263905  263907  263913  263917  263919  263923  263925  263929  263931  263933  263934  263935  263937  263938  263939  263941  263943  263947  263949  263953  263955  263959  263965  263967  263973  263977  263979  263983  263989  263995  263997  264003  264007  264009  264015  264019  264025  264033  266669 

科目: 來源: 題型:

【題目】已知拋物線),焦點為,直線交拋物線兩點,的中點,且

(1)求拋物線的方程;

(2)若,求的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四棱錐中,是正三角形,四邊形是菱形,點的中點.

(I)求證:// 平面

(II)若平面平面, 求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),為自然對數(shù)的底數(shù).

(1)若,判斷函數(shù)上的單調(diào)性;

(2)令,,若,求證:方程無實根.

查看答案和解析>>

科目: 來源: 題型:

【題目】下面給出了根據(jù)我國2012~2018年水果人均占有量y(單位:kg)和年份代碼x繪制的散點圖(2012~2018年的年份代碼x分別為1~7).

1)根據(jù)散點圖相應(yīng)數(shù)據(jù)計算得,,求y關(guān)于x的線性回歸方程;

2)估計我國2023年水果人均占有量是多少?(精確到1kg).

附:回歸方程中斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

科目: 來源: 題型:

【題目】“愛國,是人世間最深層、最持久的情感,是一個人立德之源、立功之本!痹谥腥A民族幾千年綿延發(fā)展的歷史長河中,愛國主義始終是激昂的主旋律。愛國汽車公司擬對“東方紅”款高端汽車發(fā)動機進行科技改造,根據(jù)市場調(diào)研與模擬,得到科技改造投入(億元)與科技改造直接收益(億元)的數(shù)據(jù)統(tǒng)計如下:

2

3

4

6

8

10

13

21

22

23

24

25

13

22

31

42

50

56

58

68.5

68

67.5

66

66

當(dāng)時,建立了的兩個回歸模型:模型①:;模型②:;當(dāng)時,確定滿足的線性回歸方程為:.

(1)根據(jù)下列表格中的數(shù)據(jù),比較當(dāng)時模型①、②的相關(guān)指數(shù),并選擇擬合精度更高、更可靠的模型,預(yù)測對“東方紅”款汽車發(fā)動機科技改造的投入為17億元時的直接收益.

回歸模型

模型①

模型②

回歸方程

182.4

79.2

(附:刻畫回歸效果的相關(guān)指數(shù),.)

(2)為鼓勵科技創(chuàng)新,當(dāng)科技改造的投入不少于20億元時,國家給予公司補貼收益10億元,以回歸方程為預(yù)測依據(jù),比較科技改造投入17億元與20億元時公司實際收益的大小;

(附:用最小二乘法求線性回歸方程的系數(shù)公式 ;

(3)科技改造后,“東方紅”款汽車發(fā)動機的熱效大幅提高,服從正態(tài)分布,公司對科技改造團隊的獎勵方案如下:若發(fā)動機的熱效率不超過,不予獎勵;若發(fā)動機的熱效率超過但不超過,每臺發(fā)動機獎勵2萬元;若發(fā)動機的熱效率超過,每臺發(fā)動機獎勵5萬元.求每臺發(fā)動機獲得獎勵的數(shù)學(xué)期望.

(附:隨機變量服從正態(tài)分布,則.)

查看答案和解析>>

科目: 來源: 題型:

【題目】已知為坐標(biāo)原點,點,,,動點滿足,點為線段的中點,拋物線上點的縱坐標(biāo)為,.

(1)求動點的軌跡曲線的標(biāo)準(zhǔn)方程及拋物線的標(biāo)準(zhǔn)方程;

(2)若拋物線的準(zhǔn)線上一點滿足,試判斷是否為定值,若是,求這個定值;若不是,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在圓柱中,點分別為上、下底面的圓心,平面是軸截面,點在上底面圓周上(異于),點為下底面圓弧的中點,點與點在平面的同側(cè),圓柱的底面半徑為1,高為2.

(1)若平面平面,證明:;

(2)若直線與平面所成線面角的正弦值等于,證明:平面與平面所成銳二面角的平面角大于.

查看答案和解析>>

科目: 來源: 題型:

【題目】某車間有5名工人其中初級工2人,中級工2人,高級工1現(xiàn)從這5名工人中隨機抽取2名.

求被抽取的2名工人都是初級工的概率;

求被抽取的2名工人中沒有中級工的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】函數(shù)處取得極大值,則實數(shù)的取值范圍為_____

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線與直線相交于,兩點,為拋物線的焦點,若,則的中點的橫坐標(biāo)為( )

A. B. 3C. 5D. 6

查看答案和解析>>

同步練習(xí)冊答案