相關(guān)習(xí)題
 0  263902  263910  263916  263920  263926  263928  263932  263938  263940  263946  263952  263956  263958  263962  263968  263970  263976  263980  263982  263986  263988  263992  263994  263996  263997  263998  264000  264001  264002  264004  264006  264010  264012  264016  264018  264022  264028  264030  264036  264040  264042  264046  264052  264058  264060  264066  264070  264072  264078  264082  264088  264096  266669 

科目: 來源: 題型:

【題目】如圖,在四棱錐中,,,且,

(1)證明:平面

(2)在線段上,是否存在一點,使得二面角的大小為?如果存在,求的值;如果不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】學(xué)校從參加高二年級期末考試的學(xué)生中抽出一些學(xué)生,并統(tǒng)計了他們的數(shù)學(xué)成績(成績均為整數(shù)且滿分為100分),所得數(shù)據(jù)整理后,列出了如下頻率分布表.

分組

頻數(shù)

頻率

[4050

A

0.04

[50,60

4

0.08

[6070

20

0.40

[7080

15

0.30

[80,90

7

B

[90,100]

2

0.04

合計

C

1

1)在給出的樣本頻率分布表中,求A,BC的值;

2)補全頻率分布直方圖,并利用它估計全體高二年級學(xué)生期末數(shù)學(xué)成績的眾數(shù)、中位數(shù);

3)現(xiàn)從分數(shù)在[80,90),[90,100]9名同學(xué)中隨機抽取兩名同學(xué),求被抽取的兩名學(xué)生分數(shù)均不低于90分的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】隨著手機的發(fā)展,“微信”逐漸成為人們支付購物的一種形式.某機構(gòu)對“使用微信支付”的態(tài)度進行調(diào)查,隨機抽取了50人,他們年齡的頻數(shù)分布及對“使用微信支付”贊成人數(shù)如下表.

年齡

(單位:歲)

,

,

,

,

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(Ⅰ)若以“年齡45歲為分界點”,由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認為“使用微信支付”的態(tài)度與人的年齡有關(guān);

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計

贊成

不贊成

合計

(Ⅱ)若從年齡在的被調(diào)查人中按照贊成與不贊成分層抽樣,抽取5人進行追蹤調(diào)查,在5人中抽取3人做專訪,求3人中不贊成使用微信支付的人數(shù)的分布列和期望值.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線Cx22pyp0)的焦點到直線l2xy10的距離為

1)求拋物線的方程;

2)過點P0,t)(t0)的直線l與拋物線C交于A,B兩點,交x軸于點Q,若拋物線C上總存在點M(異于原點O),使得∠PMQ=∠AMB90°,求實數(shù)t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,△ABC為正三角形,且BCCD2,CDBC,將△ABC沿BC翻折.

1)當(dāng)AD2時,求證:平面ABD⊥平面BCD;

2)若點A的射影在△BCD內(nèi),且直線AB與平面ACD所成角為60°,求AD的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知橢圓,過動點M0,m)的直線交x軸于點N,交橢圓CA,P(其中P在第一象限,N在橢圓內(nèi)),且M是線段PN的中點,點P關(guān)于x軸的對稱點為Q,延長QMC于點B,記直線PM,QM的斜率分別為k1k2

1)當(dāng)時,求k2的值;

2)當(dāng)時,求直線AB斜率的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐PABCD中,四邊形ABCD是菱形,,BD2

1)若點E,F分別為線段PD,BC上的中點,求證:EF∥平面PAB;

2)若平面PBD⊥平面ABCD,且PDPB,PDPB,求平面PAB與平面PBC所成的銳二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的兩個焦點分別為、,點在橢圓上,且的周長為

(Ⅰ)求橢圓的方程;

(Ⅱ)若點的坐標為,不過原點的直線與橢圓相交于,兩點,設(shè)線段的中點為,點到直線的距離為,且,三點共線,求的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,將曲線向左平移個單位長度得到曲線.

(1)求曲線的參數(shù)方程;

(2)已知為曲線上的動點, 兩點的極坐標分別為,求的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知a0,且a≠1.命題P:函數(shù)fx)=logax在(0,+∞)上為增函數(shù);命題Q:函數(shù)gx)=x22ax+4有零點.

1)若命題P,Q滿足PQ假,求實數(shù)a的取值范圍;

2)命題S:函數(shù)yfgx))在區(qū)間[2+∞)上值恒為正數(shù).若命題S為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案