科目: 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質量分別在,,,,,(單位:克)中,經統(tǒng)計得頻率分布直方圖如圖所示.
(1) 經計算估計這組數據的中位數;
(2)現按分層抽樣從質量為,的芒果中隨機抽取個,再從這個中隨機抽取個,求這個芒果中恰有個在內的概率.
(3)某經銷商來收購芒果,以各組數據的中間數代表這組數據的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有個,經銷商提出如下兩種收購方案:
A:所以芒果以元/千克收購;
B:對質量低于克的芒果以元/個收購,高于或等于克的以元/個收購.
通過計算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,、是離心率為的橢圓:的左、右焦點,過作軸的垂線交橢圓所得弦長為,設、是橢圓上的兩個動點,線段的中垂線與橢圓交于、兩點,線段的中點的橫坐標為1.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司為了變廢為寶,節(jié)約資源,新上了一個從生活垃圾中提煉生物柴油的項目.經測算該項目月處理成本(元)與月處理量(噸)之間的函數關系可以近似地表示為:
,且每處理一噸生活垃圾,可得到能利用的生物柴油價值為200元,若該項目不獲利,政府將給予補貼.
(1)當時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補貼多少元才能使該項目不虧損?
(2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?
查看答案和解析>>
科目: 來源: 題型:
【題目】(卷號)2040818101747712
(題號)2050752239689728
(題文)
在平面直角坐標系中,以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知直線的參數方程為(為參數),曲線C的極坐標方程為.
(1)求曲線的直角坐標方程和直線的普通方程;
(2)設直線與曲線交于兩點,點,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,已知橢圓: 的長軸為,過點的直線與軸垂直,橢圓上一點與橢圓的長軸的兩個端點構成的三角形的最大面積為2,且橢圓的離心率為.
(1)求橢圓的標準方程;
(2) 設是橢圓上異于, 的任意一點,連接并延長交直線于點, 點為的中點,試判斷直線與橢圓的位置關系,并證明你的結論.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為(1+cos2θ)=8sinθ.
(1)求曲線C的普通方程;
(2)直線l的參數方程為,t為參數直線與y軸交于點F與曲線C的交點為A,B,當|FA||FB|取最小值時,求直線的直角坐標方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com