科目: 來(lái)源: 題型:
【題目】(5分)《九章算術(shù)》“竹九節(jié)”問(wèn)題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則第五節(jié)的容積為( )
A. 1升 B. 升 C. 升 D. 升
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在平面真角坐標(biāo)系xOy中,曲線的參數(shù)方程為(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立根坐標(biāo)系.曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若曲線與曲線交于M,N兩點(diǎn),直線OM和ON的斜率分別為和,求的值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】2019年是扶貧的關(guān)鍵年,作為產(chǎn)業(yè)扶貧的電商扶貧將會(huì)迎來(lái)更多的政策或扶持.京東、阿里、拼多多、抖音、蘇寧等互聯(lián)網(wǎng)公司都紛紛加入電商扶貧.城鄉(xiāng)各地區(qū)都展開農(nóng)村電商培訓(xùn),如對(duì)電商團(tuán)隊(duì)、物流企業(yè)、返鄉(xiāng)創(chuàng)業(yè)群體、普通農(nóng)戶等進(jìn)行培訓(xùn).某部門組織A、B兩個(gè)調(diào)查小組在開展電商培訓(xùn)之前先進(jìn)行問(wèn)卷調(diào)查,從獲取的有效問(wèn)卷中,針對(duì)25至55歲的人群,接比例隨機(jī)抽取400份,進(jìn)行數(shù)據(jù)統(tǒng)計(jì),具體情況如下表:
A組統(tǒng)計(jì)結(jié)果 | B組統(tǒng)計(jì)結(jié)果 | |||
參加電商培訓(xùn) | 不參加電商培訓(xùn) | 參加電商培訓(xùn) | 不參加電商培訓(xùn) | |
50 | 25 | 45 | 20 | |
35 | 43 | 30 | 32 | |
20 | 60 | 20 | 20 |
(1)先用分層抽樣的方法從400人中按“年齡是否達(dá)到45歲”抽出一個(gè)容量為80的樣本,將“年齡達(dá)到45歲”的被抽個(gè)體分配到“參加電商培訓(xùn)”和“不參加電商培訓(xùn)”中去。
①這80人中“年齡達(dá)到45歲且參加電商培訓(xùn)”的人數(shù);
②調(diào)查組從所抽取的“年齡達(dá)到45歲且參加電商培訓(xùn)”的人員中抽取3人,安排進(jìn)入抖音公司參觀學(xué)習(xí),求這3人恰好是A組的人數(shù)X的分布列和數(shù)學(xué)期望;
(2)從統(tǒng)計(jì)數(shù)據(jù)可直觀得出“參加電商培訓(xùn)與年齡(記作m歲)有關(guān)”的結(jié)論.請(qǐng)列出列聯(lián)表,用獨(dú)立性檢驗(yàn)的方法,通過(guò)比較的觀測(cè)值的大小,判斷年齡取35歲還是45歲時(shí)犯錯(cuò)誤的概率哪一個(gè)更。
(參考公式:,其中)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知是函數(shù)的導(dǎo)函數(shù),且,,則下列說(shuō)法正確的是___________.
①;
②曲線在處的切線斜率最小;
③函數(shù)在存在極大值和極小值;
④在區(qū)間上至少有一個(gè)零點(diǎn).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】四色猜想是世界三大數(shù)學(xué)猜想之一,1976年美國(guó)數(shù)學(xué)家阿佩爾與哈肯證明了四色定理.其內(nèi)容是:“任意一張平面地圖只用四種顏色就能使具有共同邊界的國(guó)家涂上不同的顏色.”用數(shù)學(xué)語(yǔ)言表示為“將平面任意地細(xì)分為不相重疊的區(qū)域,每一個(gè)區(qū)域總可以用1,2,3,4四個(gè)數(shù)字之一標(biāo)記,而不會(huì)使相鄰的兩個(gè)區(qū)域得到相同的數(shù)字.”如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線圍成的各區(qū)域(如區(qū)域D由兩個(gè)邊長(zhǎng)為1的小正方形構(gòu)成)上分別標(biāo)有數(shù)字1,2,3,4的四色地圖符合四色定理,區(qū)域A、B、C、D、E、F標(biāo)記的數(shù)字丟失若在該四色地圖上隨機(jī)取一點(diǎn),則恰好取在標(biāo)記為4的區(qū)域的概率是
A. B. C. D.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線與恰有一個(gè)公共點(diǎn).
(Ⅰ)求曲線的極坐標(biāo)方程;
(Ⅱ)已知曲線上兩點(diǎn),滿足,求面積的最大值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,某種水箱用的“浮球”,是由兩個(gè)半球和一個(gè)圓柱筒組成的.已知半球的直徑是6 cm,圓柱筒高為2 cm.
(1)這種“浮球”的體積是多少cm3(結(jié)果精確到0.1)?
(2)要在2 500個(gè)這樣的“浮球”表面涂一層膠,如果每平方米需要涂膠100克,那么共需膠多少克?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】(本小題滿分12分)設(shè)函數(shù).
(Ⅰ)若函數(shù)在定義域上為增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,若函數(shù),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,設(shè)橢圓的左焦點(diǎn)為,短軸的兩個(gè)端點(diǎn)分別為,且,點(diǎn)在上.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與橢圓和圓分別相切于,兩點(diǎn),當(dāng)面積取得最大值時(shí),求直線的方程.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù),其導(dǎo)函數(shù)的兩個(gè)零點(diǎn)為和.
(I)求曲線在點(diǎn)處的切線方程;
(II)求函數(shù)的單調(diào)區(qū)間;
(III)求函數(shù)在區(qū)間上的最值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com