科目: 來源: 題型:
【題目】如圖,在四棱錐中,底面是正方形,且,平面 平面,,點為線段的中點,點是線段上的一個動點.
(Ⅰ)求證:平面 平面;
(Ⅱ)設(shè)二面角的平面角為,試判斷在線段上是否存在這樣的點,使得,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列四個命題:
①殘差平方和越小的模型,擬合的效果越好;
②用相關(guān)指數(shù)來刻畫回歸效果,越小,說明模型擬合的效果越好;
③散點圖中所有點都在回歸直線附近;
④隨機誤差滿足,其方差的大小可用來衡量預(yù)報精確度.
其中正確命題的個數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)(為常數(shù), 為自然對數(shù)的底數(shù)).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在內(nèi)存在三個極值點,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】圖一是美麗的“勾股樹”,它是一個直角三角形分別以它的每一邊向外作正方形而得到.圖二是第1代“勾股樹”,重復(fù)圖二的作法,得到圖三為第2代“勾股樹”,以此類推,已知最大的正方形面積為1,則第代“勾股樹”所有正方形的個數(shù)與面積的和分別為( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】某購物網(wǎng)站對在7座城市的線下體驗店的廣告費指出萬元和銷售額萬元的數(shù)據(jù)統(tǒng)計如下表:
城市 | A | B | C | D | E | F | G |
廣告費支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷售額 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用線性回歸模型擬合y與x關(guān)系,求y關(guān)于x的線性回歸方程.
(2)若用對數(shù)函數(shù)回歸模型擬合y與x的關(guān)系,可得回歸方程,經(jīng)計算對數(shù)函數(shù)回歸模型的相關(guān)指數(shù)約為0.95,請說明選擇哪個回歸模型更合適,并用此模型預(yù)測A城市的廣告費用支出8萬元時的銷售額.
參考數(shù)據(jù):,,,,,.
參考公式:,
相關(guān)指數(shù):(注意:與公式中的相似之處)
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解人們對“延遲退休年齡政策”的態(tài)度,某部門從年齡在15歲到65歲的人群中隨機調(diào)查了100人,將這100人的年齡數(shù)據(jù)分成5組:,整理得到如圖所示的頻率分布直方圖.
(1)由頻率分布直方圖,計算出各年齡段的人數(shù),并估計這100人年齡的眾數(shù)、中位數(shù)和平均數(shù);(該小題不用寫解題過程,請在答題卷上直接寫出答案
(2)支持“延遲退休”的人數(shù)如下表所示,根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的2×2列聯(lián)表,據(jù)此表,能否有95%的把握認(rèn)為以45歲為分界點的不同人群對“延遲退休年齡政”的不支持態(tài)度存在差異?
附:,其中.
年齡 | |||||
支持“延遲退休”的人數(shù) | 15 | 5 | 15 | 28 | 17 |
參考數(shù)據(jù):
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著節(jié)能減排意識深入人心以及共享單車在饒城的大范圍推廣,越來越多的市民在出行時喜歡選擇騎行共享單車。為了研究廣大市民在共享單車上的使用情況,某公司在我市隨機抽取了100名用戶進行調(diào)查,得到如下數(shù)據(jù):
每周使用次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合計 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)如果認(rèn)為每周使用超過3次的用戶為“喜歡騎行共享單車”,請完成列表(見答題卡),并判斷能否在犯錯誤概率不超過0.05的前提下,認(rèn)為是否“喜歡騎行共享單車”與性別有關(guān)?
(2)每周騎行共享單車6次及6次以上的用戶稱為“騎行達人”,視頻率為概率,在我市所有“騎行達人”中,隨機抽取4名用戶.
① 求抽取的4名用戶中,既有男生“騎行達人”又有女“騎行達人”的概率;
②為了鼓勵女性用戶使用共享單車,對抽出的女“騎行達人”每人獎勵500元,記獎勵總金額為,求的分布列及數(shù)學(xué)期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓兩焦點,并經(jīng)過點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)為橢圓上關(guān)于軸對稱的不同兩點,為軸上兩點,且,證明:直線的交點仍在橢圓上;
(3)你能否將(2)推廣到一般橢圓中?寫出你的結(jié)論即可.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com