科目: 來源: 題型:
【題目】某學(xué)校隨機抽取部分學(xué)生調(diào)查其上學(xué)路上所需時間(單位:分鐘),并將所得數(shù)據(jù)制成頻率分布直方圖(如圖),若上學(xué)路上所需時間的范圍為,樣本數(shù)據(jù)分組為,,,,.
(1)求直方圖中a的值;
(2)如果上學(xué)路上所需時間不少于40分鐘的學(xué)生可申請在學(xué)校住宿,若招收學(xué)生1200人,請估計所招學(xué)生中有多少人可以申請住宿;
(3)求該校學(xué)生上學(xué)路上所需的平均時間.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項和為Sn,若S9=81,a3+a5=14.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=,若{bn}的前n項和為Tn,證明:Tn<.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別是線段AB、AD、AA1的中點,又P、Q分別在線段A1B1、A1D1上,且A1P=A1Q=x(0<x<1).設(shè)平面MEF∩平面MPQ
=l,現(xiàn)有下列結(jié)論:
①l∥平面ABCD;
②l⊥AC;
③直線l與平面BCC1B1不垂直;
④當(dāng)x變化時,l不是定直線.
其中不成立的結(jié)論是________.(寫出所有不成立結(jié)論的序號)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線:的焦點為,直線與拋物線交于,兩點,是坐標(biāo)原點.
(1)若直線過點且,求直線的方程;
(2)已知點,若直線不與坐標(biāo)軸垂直,且,證明:直線過定點.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線()經(jīng)過點,直線與拋物線有兩個不同的交點、,直線交軸于,直線交軸于.
(1)若直線過點,求直線的斜率的取值范圍;
(2)若直線過點,設(shè),,,求的值;
(3)若直線過拋物線的焦點,交軸于點,,,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本小題滿分13分)
為回饋顧客,某商場擬通過摸球兌獎的方式對1000位顧客進行獎勵,規(guī)定:每位顧客從一個裝有4個標(biāo)有面值的球的袋中一次性隨機摸出2個球,球上所標(biāo)的面值之和為該顧客所獲的獎勵額.
(1)若袋中所裝的4個球中有1個所標(biāo)的面值為50元,其余3個均為10元,求
①顧客所獲的獎勵額為60元的概率
②顧客所獲的獎勵額的分布列及數(shù)學(xué)期望;
(2)商場對獎勵總額的預(yù)算是60000元,并規(guī)定袋中的4個球只能由標(biāo)有面值10元和50元的兩種球組成,或標(biāo)有面值20元和40元的兩種球組成.為了使顧客得到的獎勵總額盡可能符合商場的預(yù)算且每位顧客所獲的獎勵額相對均衡,請對袋中的4個球的面值給出一個合適的設(shè)計,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在軸,離心率為,短軸長為2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè),過橢圓左焦點的直線交于,兩點,若對滿足條件的任意直線,不等式恒成立,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com