科目: 來源: 題型:
【題目】南北朝時代的偉大科學家祖暅在數(shù)學上有突出貢獻,他在實踐的基礎上提出祖暅原理:“冪勢既同,則積不容異”. 其含義是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平行平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等.如圖,夾在兩個平行平面之間的兩個幾何體的體積分別為,被平行于這兩個平面的任意平面截得的兩個截面面積分別為,則“相等”是“總相等”的
A. 充分而不必要條件B. 必要而不充分條件
C. 充分必要條件D. 既不充分也不必要條件
查看答案和解析>>
科目: 來源: 題型:
【題目】立德中學和樹人中學各派一名學生組成一個聯(lián)隊參加一項智力競賽,這個智力競賽一共兩輪,在每一輪中,兩名同學各回答一次題目,已知,立德中學派出的學生每輪中答對問題的概率都是,樹人中學派出的學生每輪中答對問題的概率都是;每輪中,兩位同學答對與否互不影響,各論結(jié)果亦互不影響,求:
(Ⅰ)兩輪比賽后,立德中學的學生恰比樹人中學的學生答對題目的個數(shù)多個的概率;
(Ⅱ)兩輪比賽后,記為這兩名同學一共答對的題目數(shù),求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù), .
(1)設.
①若函數(shù)在處的切線過點,求的值;
②當時,若函數(shù)在上沒有零點,求的取值范圍;
(2)設函數(shù),且(),求證:當時, .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=a1nx﹣ax+1(a∈R且a≠0).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求證:(n≥2,n∈N*).
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,A(﹣2,0),B(2,0),P為不在x軸上的動點,直線PA,PB的斜率滿足kPAkPB.
(1)求動點P的軌跡Γ的方程;
(2)若M,N是軌跡Γ上兩點,kMN=1,求△OMN面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐S—ABCD中,底面ABCD,底面ABCD是矩形,且,E是SA的中點.
(1)求證:平面BED平面SAB;
(2)求平面BED與平面SBC所成二面角(銳角)的大。
查看答案和解析>>
科目: 來源: 題型:
【題目】設橢圓的一個頂點與拋物線的焦點重合,,分別是橢圓的左、右焦點,離心率,過橢圓右焦點的直線與橢圓交于,兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線,使得,若存在,求出直線的方程;若不存在,說明理由;
(Ⅲ)設點是一個動點,若直線的斜率存在,且為中點,,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中,平面,底面是菱形,,.
(Ⅰ)求證:直線平面;
(Ⅱ)求直線與平面所成角的正切值;
(Ⅲ)設點在線段上,且二面角的余弦值為,求點到底面的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的準線方程為x=﹣1.
(1)求拋物線C的方程;
(2)過拋物線C的焦點作直線l,交拋物線C于A,B兩點,若線段AB中點的橫坐標為6,求|AB|.
查看答案和解析>>
科目: 來源: 題型:
【題目】某城市為鼓勵人們綠色出行,乘坐地鐵,地鐵公司決定按照乘客經(jīng)過地鐵站的數(shù)量實施分段優(yōu)惠政策,不超過站的地鐵票價如下表:
乘坐站數(shù) | |||
票價(元) |
現(xiàn)有甲、乙兩位乘客同時從起點乘坐同一輛地鐵,已知他們乘坐地鐵都不超過站.甲、乙乘坐不超過站的概率分別為, ;甲、乙乘坐超過站的概率分別為, .
(1)求甲、乙兩人付費相同的概率;
(2)設甲、乙兩人所付費用之和為隨機變量,求的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com