相關(guān)習(xí)題
 0  264338  264346  264352  264356  264362  264364  264368  264374  264376  264382  264388  264392  264394  264398  264404  264406  264412  264416  264418  264422  264424  264428  264430  264432  264433  264434  264436  264437  264438  264440  264442  264446  264448  264452  264454  264458  264464  264466  264472  264476  264478  264482  264488  264494  264496  264502  264506  264508  264514  264518  264524  264532  266669 

科目: 來(lái)源: 題型:

【題目】如圖所示,三棱柱的側(cè)面是圓柱的軸截面,C是圓柱底面圓周上不與A、B重合的一個(gè)點(diǎn)。

(1)若圓柱的軸截面是正方形,當(dāng)點(diǎn)C是弧AB的中點(diǎn)時(shí),求異面直線AB的所成角的大小(結(jié)果用反三角函數(shù)值表示);

(2)當(dāng)點(diǎn)C是弧AB的中點(diǎn)時(shí),求四棱錐體積與圓柱體積的比.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知圓.

1)求過點(diǎn)的圓的切線方程;

2)若直線過點(diǎn)且被圓C截得的弦長(zhǎng)為,求的范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,、是以為直徑的圓上兩點(diǎn),,,上一點(diǎn),且,將圓沿直徑折起,使點(diǎn)在平面的射影上,已知.

1)求證:平面

2)求證:平面;

3)求三棱錐的體積.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知數(shù)列滿足

1)求數(shù)列的通項(xiàng)公式;

2)對(duì)任意給定的,是否存在)使成等差數(shù)列?若存

在,用分別表示(只要寫出一組);若不存在,請(qǐng)說(shuō)明理由;

3)證明:存在無(wú)窮多個(gè)三邊成等比數(shù)列且互不相似的三角形,其邊長(zhǎng)為

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知圓M(x1)2y2=1,圓N(x1)2y2=9,動(dòng)圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線 C

)求C的方程;

l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點(diǎn),當(dāng)圓P的半徑最長(zhǎng)時(shí),求|AB|.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,在四棱錐中,四邊形是菱形, ,平面平面

在棱上運(yùn)動(dòng).

(1)當(dāng)在何處時(shí), 平面;

(2)已知的中點(diǎn), 交于點(diǎn),當(dāng)平面時(shí),求三棱錐的體積.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,橢圓C)左,右焦點(diǎn)分別為,,且橢圓的長(zhǎng)軸長(zhǎng)為,右準(zhǔn)線方程為.

1)求橢圓C的方程;

2)設(shè)直線l過橢圓C的右焦點(diǎn),且與橢圓相交與AB(與左右頂點(diǎn)不重合)

i)橢圓的右頂點(diǎn)為M,設(shè)的斜率為的斜率為,求的值;

ii)若橢圓上存在一點(diǎn)D滿足,求直線l的方程.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】點(diǎn)P到圖形C上每一個(gè)點(diǎn)的距離的最小值稱為點(diǎn)P到圖形C的距離,那么平面內(nèi)到定圓C的距離與到定點(diǎn)的距離相等的點(diǎn)的軌跡可能是(

A.B.直線C.橢圓D.雙曲線的一支

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若關(guān)于的方程有兩個(gè)不同實(shí)數(shù)根,的取值范圍;

(2)若關(guān)于的不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,在直棱柱

I)證明:

II)求直線所成角的正弦值。

查看答案和解析>>

同步練習(xí)冊(cè)答案