相關(guān)習(xí)題
 0  265292  265300  265306  265310  265316  265318  265322  265328  265330  265336  265342  265346  265348  265352  265358  265360  265366  265370  265372  265376  265378  265382  265384  265386  265387  265388  265390  265391  265392  265394  265396  265400  265402  265406  265408  265412  265418  265420  265426  265430  265432  265436  265442  265448  265450  265456  265460  265462  265468  265472  265478  265486  266669 

科目: 來(lái)源: 題型:

【題目】著名數(shù)學(xué)家華羅庚先生曾說(shuō)過(guò):“數(shù)缺形時(shí)少直觀,形缺數(shù)時(shí)難入微數(shù)形結(jié)合百般好,隔裂分家萬(wàn)事休.”在數(shù)學(xué)的學(xué)習(xí)和研究中,我們經(jīng)常用函數(shù)的圖象來(lái)研究函數(shù)的性質(zhì),也經(jīng)常用函數(shù)的解析式來(lái)琢磨函數(shù)的圖象的特征,如某體育品牌的LOGO,可抽象為如圖所示的軸對(duì)稱(chēng)的優(yōu)美曲線(xiàn),下列函數(shù)中,其圖象大致可“完美”局部表達(dá)這條曲線(xiàn)的函數(shù)是( )

A.B.

C.D.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某公司對(duì)旗下的甲、乙兩個(gè)門(mén)店在19月份的營(yíng)業(yè)額(單位:萬(wàn)元)進(jìn)行統(tǒng)計(jì)并得到如圖折線(xiàn)圖.

下面關(guān)于兩個(gè)門(mén)店?duì)I業(yè)額的分析中,錯(cuò)誤的是( )

A.甲門(mén)店的營(yíng)業(yè)額折線(xiàn)圖具有較好的對(duì)稱(chēng)性,故而營(yíng)業(yè)額的平均值約為32萬(wàn)元

B.根據(jù)甲門(mén)店的營(yíng)業(yè)額折線(xiàn)圖可知,該門(mén)店?duì)I業(yè)額的平均值在[20,25]內(nèi)

C.根據(jù)乙門(mén)店的營(yíng)業(yè)額折線(xiàn)圖可知,其營(yíng)業(yè)額總體是上升趨勢(shì)

D.乙門(mén)店在這9個(gè)月份中的營(yíng)業(yè)額的極差為25萬(wàn)元

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】

按照某學(xué)者的理論,假設(shè)一個(gè)人生產(chǎn)某產(chǎn)品單件成本為元,如果他賣(mài)出該產(chǎn)品的單價(jià)為元,則他的滿(mǎn)意度為;如果他買(mǎi)進(jìn)該產(chǎn)品的單價(jià)為元,則他的滿(mǎn)意度為.如果一個(gè)人對(duì)兩種交易(賣(mài)出或買(mǎi)進(jìn))的滿(mǎn)意度分別為,則他對(duì)這兩種交易的綜合滿(mǎn)意度為.

現(xiàn)假設(shè)甲生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為12元和5元,乙生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為3元和20元,設(shè)產(chǎn)品A、B的單價(jià)分別為元和元,甲買(mǎi)進(jìn)A與賣(mài)出B的綜合滿(mǎn)意度為,乙賣(mài)出A與買(mǎi)進(jìn)B的綜合滿(mǎn)意度為

(1)關(guān)于、的表達(dá)式;當(dāng)時(shí),求證:=;

(2)設(shè),當(dāng)、分別為多少時(shí),甲、乙兩人的綜合滿(mǎn)意度均最大?最大的綜合滿(mǎn)意度為多少?(3)(2)中最大的綜合滿(mǎn)意度為,試問(wèn)能否適當(dāng)選取、的值,使得同時(shí)成立,但等號(hào)不同時(shí)成立?試說(shuō)明理由。

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】兩城市相距,現(xiàn)計(jì)劃在兩城市外以為直徑的半圓上選擇一點(diǎn)建造垃圾處理場(chǎng),其對(duì)城市的影響度與所選地點(diǎn)到城市的距離有關(guān),對(duì)城和城的總影響度為城和城的影響度之和,記點(diǎn)到城的距離為,建在處的垃圾處理場(chǎng)對(duì)城和城的總影響度為,統(tǒng)計(jì)調(diào)查表明:垃圾處理場(chǎng)對(duì)城的影響度與所選地點(diǎn)到城的距離的平方成反比,比例系數(shù)為4,對(duì)城的影響度與所選地點(diǎn)到城的距離的平方成反比,比例系數(shù)為,當(dāng)垃圾處理場(chǎng)建在的中點(diǎn)時(shí),對(duì)城和城的總影響度為0.065;

1)將表示成的函數(shù);

2)判斷上是否存在一點(diǎn),使建在此處的垃圾處理場(chǎng)對(duì)城和城的總影響度最小?若存在,求出該點(diǎn)到城的距離;若不存在,說(shuō)明理由;

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某段城鐵線(xiàn)路上依次有、三站,,,在列車(chē)運(yùn)行時(shí)刻表上,規(guī)定列車(chē)時(shí)整從站出發(fā),時(shí)分到達(dá)站并停車(chē)時(shí)分到達(dá)站,在實(shí)際運(yùn)行時(shí),假設(shè)列車(chē)從站正點(diǎn)出發(fā),在站停留,并在行駛時(shí)以同一速度勻速行駛,列車(chē)從站到達(dá)某站的時(shí)間與時(shí)刻表上相應(yīng)時(shí)間之差的絕對(duì)值稱(chēng)為列車(chē)在該站的運(yùn)行誤差.

1)分別寫(xiě)出列車(chē)在兩站的運(yùn)行誤差;

2)若要求列車(chē)在、兩站的運(yùn)行誤差之和不超過(guò),求的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分10)

某單位建造一間地面面積為12m2的背面靠墻的矩形小房,由于地理位置的限制,房子側(cè)面的長(zhǎng)度x不得超過(guò)米,房屋正面的造價(jià)為400/m2,房屋側(cè)面的造價(jià)為150/m2,屋頂和地面的造價(jià)費(fèi)用合計(jì)為5800元,如果墻高為3m,且不計(jì)房屋背面的費(fèi)用.

1)把房屋總造價(jià)表示成的函數(shù),并寫(xiě)出該函數(shù)的定義域.

2)當(dāng)側(cè)面的長(zhǎng)度為多少時(shí),總造價(jià)最底?最低總造價(jià)是多少?

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】2015全國(guó)高考試題)某公司為了解用戶(hù)對(duì)其產(chǎn)品的滿(mǎn)意度,從,兩地區(qū)分別隨機(jī)調(diào)查了20個(gè)用戶(hù),得到用戶(hù)對(duì)產(chǎn)品的滿(mǎn)意度評(píng)分如下:

地區(qū):62 73 81 92 95 85 74 64 53 76

78 86 95 66 97 78 88 82 76 89

地區(qū):73 83 62 51 91 46 53 73 64 82

93 48 65 81 74 56 54 76 65 79

根據(jù)用戶(hù)滿(mǎn)意度評(píng)分,將用戶(hù)的滿(mǎn)意度從低到高分為三個(gè)不同等級(jí):

滿(mǎn)意度評(píng)分

低于70

70分到89

不低于90

滿(mǎn)意度等級(jí)

不滿(mǎn)意

滿(mǎn)意

非常滿(mǎn)意

記事件:“地區(qū)用戶(hù)的滿(mǎn)意度等級(jí)高于地區(qū)用戶(hù)的滿(mǎn)意度等級(jí)”假設(shè)兩地區(qū)用戶(hù)的評(píng)價(jià)結(jié)果相互獨(dú)立.根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求的概率.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某超市隨機(jī)選取位顧客,記錄了他們購(gòu)買(mǎi)甲、乙、丙、丁四種商品的情況,整理成如下統(tǒng)計(jì)表,其中“√”表示購(gòu)買(mǎi),“×”表示未購(gòu)買(mǎi).

×

×

×

×

×

×

85

×

×

×

×

×

×

Ⅰ)估計(jì)顧客同時(shí)購(gòu)買(mǎi)乙和丙的概率;

Ⅱ)估計(jì)顧客在甲、乙、丙、丁中同時(shí)購(gòu)買(mǎi)中商品的概率;

Ⅲ)如果顧客購(gòu)買(mǎi)了甲,則該顧客同時(shí)購(gòu)買(mǎi)乙、丙、丁中那種商品的可能性最大?

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】A,B兩組各有7位病人,他們服用某種藥物后的康復(fù)時(shí)間(單位:天)記錄如下:

A組:10,11,12,13,14,15,16;

B組:12,1315,16,1714,.

假設(shè)所有病人的康復(fù)時(shí)間相互獨(dú)立,從A,B兩組隨機(jī)各選1人,A組選出的人記為甲,B組選出的人記為乙.

1)求甲的康復(fù)時(shí)間不少于14天的概率;

2)如果,求甲的康復(fù)時(shí)間比乙的康復(fù)時(shí)間長(zhǎng)的概率.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】定義:如果數(shù)列的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),則稱(chēng)三角形數(shù)列,對(duì)于三角形數(shù)列,如果函數(shù)使得仍為一個(gè)三角形數(shù)列,則稱(chēng)是數(shù)列保三角形函數(shù).

1)已知是首項(xiàng)為2,公差為1的等差數(shù)列,若是數(shù)列保三角形函數(shù),求的取值范圍;

2)已知數(shù)列的首項(xiàng)為2010,是數(shù)列的前項(xiàng)和,且滿(mǎn)足,證明三角形數(shù)列;

3)根據(jù)保三角形函數(shù)的定義,對(duì)函數(shù),和數(shù)列1,提出一個(gè)正確的命題,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案