科目: 來源: 題型:
【題目】某中學的學生積極參加體育鍛煉,其中有96%的學生喜歡足球或游泳,60%的學生喜歡足球,82%的學生喜歡游泳,則該中學既喜歡足球又喜歡游泳的學生數(shù)占該校學生總數(shù)的比例是( )
A.62%B.56%
C.46%D.42%
查看答案和解析>>
科目: 來源: 題型:
【題目】日晷是中國古代用來測定時間的儀器,利用與晷面垂直的晷針投射到晷面的影子來測定時間.把地球看成一個球(球心記為O),地球上一點A的緯度是指OA與地球赤道所在平面所成角,點A處的水平面是指過點A且與OA垂直的平面.在點A處放置一個日晷,若晷面與赤道所在平面平行,點A處的緯度為北緯40°,則晷針與點A處的水平面所成角為( )
A.20°B.40°
C.50°D.90°
查看答案和解析>>
科目: 來源: 題型:
【題目】我國新冠肺炎疫情進入常態(tài)化,各地有序推進復工復產(chǎn),下面是某地連續(xù)11天復工復產(chǎn)指數(shù)折線圖,下列說法正確的是( )
A.這11天復工指數(shù)和復產(chǎn)指數(shù)均逐日增加;
B.這11天期間,復產(chǎn)指數(shù)增量大于復工指數(shù)的增量;
C.第3天至第11天復工復產(chǎn)指數(shù)均超過80%;
D.第9天至第11天復產(chǎn)指數(shù)增量大于復工指數(shù)的增量;
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4—4:坐標系與參數(shù)方程。
已知曲線C:(t為參數(shù)), C:(為參數(shù))。
(1)化C,C的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C上的點P對應的參數(shù)為,Q為C上的動點,求中點到直線
(t為參數(shù))距離的最小值。
查看答案和解析>>
科目: 來源: 題型:
【題目】某校從參加某次知識競賽的同學中,選取60名同學將其成績(單位:分.百分制,均為整數(shù))分成,,,,,六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題.
(1)求分數(shù)在內(nèi)的頻率,并補全這個頻率分布直方圖;
(2)從頻率分布直方圖中,估計本次考試成績的眾數(shù)和平均數(shù);
(3)若從第1組和第6組兩組學生中,隨機抽取2人,求所抽取2人成績之差的絕對值大于10的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】設函數(shù)f(x)=Asin(ωx+φ)(A≠0,ω>0,<φ<)的圖象關于直線對稱,它的最小正周期為π,則( )
A. f(x)的圖象過點(0,) B. f(x)在上是減函數(shù)
C. f(x)的一個對稱中心是 D. f(x)的一個對稱中心是
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點,軸非負半軸為極軸建立極坐標系,已知直線的極坐標方程為,曲線的參數(shù)方程為(為參數(shù)).
(1)若直線平行于直線,且與曲線只有一個公共點,求直線的方程;
(2)若直線與曲線交于兩點,,求的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】,.
(1)當時,求函數(shù)的圖象在處的切線方程.
(2)若函數(shù)在定義域上為單調(diào)增函數(shù).
①求的最大整數(shù)值;
②證明:.
查看答案和解析>>
科目: 來源: 題型:
【題目】設D是圓O:x2+y2=16上的任意一點,m是過點D且與x軸垂直的直線,E是直線m與x軸的交點,點Q在直線m上,且滿足2|EQ||ED|.當點D在圓O上運動時,記點Q的軌跡為曲線C.
(1)求曲線C的方程.
(2)已知點P(2,3),過F(2,0)的直線l交曲線C于A,B兩點,交直線x=8于點M.判定直線PA,PM,PB的斜率是否依次構成等差數(shù)列?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com