相關習題
 0  265457  265465  265471  265475  265481  265483  265487  265493  265495  265501  265507  265511  265513  265517  265523  265525  265531  265535  265537  265541  265543  265547  265549  265551  265552  265553  265555  265556  265557  265559  265561  265565  265567  265571  265573  265577  265583  265585  265591  265595  265597  265601  265607  265613  265615  265621  265625  265627  265633  265637  265643  265651  266669 

科目: 來源: 題型:

【題目】某校興趣小組在如圖所示的矩形區(qū)域內(nèi)舉行機器人攔截挑戰(zhàn)賽,在處按方向釋放機器人甲,同時在處按某方向釋放機器人乙,設機器人乙在處成功攔截機器人甲.若點在矩形區(qū)域內(nèi)(包含邊界),則挑戰(zhàn)成功,否則挑戰(zhàn)失敗.已知米,中點,機器人乙的速度是機器人甲的速度的2倍,比賽中兩機器人均按勻速直線運動方式行進,記的夾角為

1)若,足夠長,則如何設置機器人乙的釋放角度才能挑戰(zhàn)成功?(結果精確到);

2)如何設計矩形區(qū)域的寬的長度,才能確保無論的值為多少,總可以通過設置機器人乙的釋放角度使機器人乙在矩形區(qū)域內(nèi)成功攔截機器人甲?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在長方體中,,,平面截長方體得到一個矩形,且,

1)求截面把該長方體分成的兩部分體積之比;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某景區(qū)提供自行車出租,該景區(qū)有輛自行車供游客租賃使用,管理這些自行車的費用是每日元.根據(jù)經(jīng)驗,若每輛自行車的日租金不超過元,則自行車可以全部租出;若超出元,則每超過元,租不出的自行車就增加輛.為了便于結算,每輛自行車的日租金(元)只取整數(shù),并且要求租自行車一日的總收入必須高于這一日的管理費用,用(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費用后得到的部分).

1)求函數(shù)的解析式;

2)試問當每輛自行車的日租金為多少元時,才能使一日的凈收入最多?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知,其中.

1)若,寫出的單調(diào)區(qū)間:

2)若函數(shù)恰有三個不同的零點,且這些零點之和為-2,求a、b的值;

3)若函數(shù)上有四個不同零點,求的最大值。

查看答案和解析>>

科目: 來源: 題型:

【題目】在數(shù)列中,,其中.

1)若依次成公差不為0的等差數(shù)列,求m;

2)證明:恒成立的充要條件;

3)若,求證:存在,使得.

查看答案和解析>>

科目: 來源: 題型:

【題目】若函數(shù)在給定的區(qū)間上滿足恒成立,則稱這兩個函數(shù)在該區(qū)間上和諧

1)若函數(shù)R上和諧,求實數(shù)a的取值范圍;

2)若函數(shù)上和諧,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】己知.

1)解關于x的不等式;

2)若的解集為R,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】給定函數(shù),令,對以下三個論斷:

1)若都是奇函數(shù),則也是奇函數(shù);(2)若都是非奇非偶函數(shù),則也是非奇非偶函數(shù):(3之一與有相同的奇偶性;其中正確論斷的個數(shù)為(

A.0B.1C.2D.3

查看答案和解析>>

科目: 來源: 題型:

【題目】是定義在區(qū)間上且同時滿足如下條件的函數(shù)所組成的集合:

①對任意的,都有;

②存在常數(shù),使得對任意的,都有

1)設,試判斷是否屬于集合;

2)若,如果存在,使得,求證:滿足條件的是唯一的;

3)設,且,試求參數(shù)的取值范圍

查看答案和解析>>

科目: 來源: 題型:

【題目】某創(chuàng)業(yè)投資公司擬開發(fā)某種新能源產(chǎn)品,估計能獲得萬元到萬元的投資利益,現(xiàn)準備制定一個對科研課題組的獎勵方案:獎金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,且獎金不超過萬元,同時獎金不超過收益的

)請分析函數(shù)是否符合公司要求的獎勵函數(shù)模型,并說明原因.

)若該公司采用函數(shù)模型作為獎勵函數(shù)模型,試確定最小正整數(shù)的值.

查看答案和解析>>

同步練習冊答案