科目: 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)為,過(M不過橢圓的頂點(diǎn)和中心)且斜率為k直線l交橢圓于兩點(diǎn),與y軸交于點(diǎn)N,且.
(1)若直線l過點(diǎn),求的周長;
(2)若直線l過點(diǎn),求線段的中點(diǎn)R的軌跡方程;
(3)求證:為定值,并求出此定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正項(xiàng)數(shù)列的前n項(xiàng)和為,對于任意正整數(shù)m、n及正常數(shù)q,當(dāng)時,恒成立,若存在常數(shù),使得為等差數(shù)列,則常數(shù)c的值為______
查看答案和解析>>
科目: 來源: 題型:
【題目】已知F為拋物線y2=x的焦點(diǎn),點(diǎn)A,B在該拋物線上且位于x軸的兩側(cè),(其中O為坐標(biāo)原點(diǎn)),則△ABO與△AFO面積之和的最小值是________.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義,已知函數(shù)、定義域都是,給出下列命題:
(1)若、都是奇函數(shù),則函數(shù)為奇函數(shù);
(2)若、都是減函數(shù),則函數(shù)為減函數(shù);
(3)若,,則;
(4)若、都是周期函數(shù),則函數(shù)是周期函數(shù).
其中正確命題的個數(shù)為( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在底面邊長為,側(cè)棱長為的正四棱柱中,是側(cè)棱上的一點(diǎn),.
(1)若,求異面直線與所成角的余弦;
(2)是否存在實(shí)數(shù),使直線與平面所成角的正弦值是?若存在,請求出的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù), ().
(1)當(dāng)時,若函數(shù)與的圖象在處有相同的切線,求的值;
(2)當(dāng)時,若對任意和任意,總存在不相等的正實(shí)數(shù),使得,求的最小值;
(3)當(dāng)時,設(shè)函數(shù)與的圖象交于 兩點(diǎn).求證: .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,橢圓的離心率是,左右焦點(diǎn)分別為,,過點(diǎn)的動直線與橢圓相交于,兩點(diǎn),當(dāng)直線過時,的周長為.
(1)求橢圓的方程;
(2)當(dāng)時,求直線方程;
(3)已知點(diǎn),直線,的斜率分別為,.問是否存在實(shí)數(shù),使得恒成立?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,三個校區(qū)分別位于扇形OAB的三個頂點(diǎn)上,點(diǎn)Q是弧AB的中點(diǎn),現(xiàn)欲在線段OQ上找一處開挖工作坑P(不與點(diǎn)O,Q重合),為小區(qū)鋪設(shè)三條地下電纜管線PO,PA,PB,已知OA=2千米,∠AOB=,記∠APQ=θrad,地下電纜管線的總長度為y千米.
(1)將y表示成θ的函數(shù),并寫出θ的范圍;
(2)請確定工作坑P的位置,使地下電纜管線的總長度最。
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為,射線與曲線交于點(diǎn),點(diǎn)滿足,設(shè)傾斜角為的直線經(jīng)過點(diǎn).
(1)求曲線的直角坐標(biāo)方程及直線的參數(shù)方程;
(2)直線與曲線交于、兩點(diǎn),當(dāng)為何值時,最大?求出此最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com