相關(guān)習(xí)題
 0  266079  266087  266093  266097  266103  266105  266109  266115  266117  266123  266129  266133  266135  266139  266145  266147  266153  266157  266159  266163  266165  266169  266171  266173  266174  266175  266177  266178  266179  266181  266183  266187  266189  266193  266195  266199  266205  266207  266213  266217  266219  266223  266229  266235  266237  266243  266247  266249  266255  266259  266265  266273  266669 

科目: 來源: 題型:

【題目】已知函數(shù),直線為曲線的切線(為自然對數(shù)的底數(shù)).

(1)求實數(shù)的值;

(2)用表示中的最小值,設(shè)函數(shù),若函數(shù)

為增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】數(shù)列的各項均為整數(shù),滿足:,且,其中

1)若,寫出所有滿足條件的數(shù)列

2)求的值;

3)證明:

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,在邊長為2的菱形中,,將沿對角線折起到的位置,使平面平面的中點,⊥平面,且,如圖2

1)求證:平面

2)求平面與平面所成角的余弦值;

3)在線段上是否存在一點,使得⊥平面?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),

討論的單調(diào)性;

當(dāng)時,若關(guān)于x的不等式恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】某中學(xué)為了解高二年級中華傳統(tǒng)文化經(jīng)典閱讀的整體情況,從高二年級隨機抽取10名學(xué)生進行了兩輪測試,并把兩輪測試成績的平均分作為該名學(xué)生的考核成績.記錄的數(shù)據(jù)如下:

1號

2號

3號

4號

5號

6號

7號

8號

9號

10號

第一輪測試成績

96

89

88

88

92

90

87

90

92

90

第二輪測試成績

90

90

90

88

88

87

96

92

89

92

(Ⅰ)從該校高二年級隨機選取一名學(xué)生,試估計這名學(xué)生考核成績大于90 分的概率;

(Ⅱ)從考核成績大于90分的學(xué)生中再隨機抽取兩名同學(xué),求這兩名同學(xué)兩輪測試成績均大于等于90分的概率;

(Ⅲ)記抽取的10名學(xué)生第一輪測試的平均數(shù)和方差分別為,,考核成績的平均數(shù)和方差分別為,,試比較, 的大小.(只需寫出結(jié)論)

查看答案和解析>>

科目: 來源: 題型:

【題目】《九章算術(shù)》的盈不足章第19個問題中提到:“今有良馬與駑馬發(fā)長安,至齊.齊去長安三千里.良馬初日行一百九十三里,日增一十三里.駑馬初日行九十七里,日減半里…”其大意為:“現(xiàn)在有良馬和駑馬同時從長安出發(fā)到齊去.已知長安和齊的距離是3000里.良馬第一天行193里,之后每天比前一天多行13里.駑馬第一天行97里,之后每天比前一天少行0.5里…”試問前4天,良馬和駑馬共走過的路程之和的里數(shù)為(  。

A.1235B.1800C.2600D.3000

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),曲線的方程為.以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.,兩點(軸上方),交極軸于點(異于極點.

1)求的直角坐標(biāo)方程和的直角坐標(biāo);

2)若的中點,上的點,求的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),

1)討論的單調(diào)性;

2)若對任意,恰有一個零點,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓,,分別是的上頂點和下頂點.

1)若,上位于軸兩側(cè)的兩點,求證:四邊形不可能是矩形;

2)若的左頂點,上一點,線段軸于點,線段軸于點,,求.

查看答案和解析>>

同步練習(xí)冊答案