相關(guān)習題
 0  266190  266198  266204  266208  266214  266216  266220  266226  266228  266234  266240  266244  266246  266250  266256  266258  266264  266268  266270  266274  266276  266280  266282  266284  266285  266286  266288  266289  266290  266292  266294  266298  266300  266304  266306  266310  266316  266318  266324  266328  266330  266334  266340  266346  266348  266354  266358  266360  266366  266370  266376  266384  266669 

科目: 來源: 題型:

【題目】已知雙曲線的左右焦點分別為,以為圓心,為半徑的圓交的右支于兩點,若的一個內(nèi)角為,則的離心率為( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】某健身館在201978兩月推出優(yōu)惠項目吸引了一批客戶.為預(yù)估20207、8兩月客戶投入的健身消費金額,健身館隨機抽樣統(tǒng)計了20197、8兩月100名客戶的消費金額,分組如下:(單位:元),得到如圖所示的頻率分布直方圖:

1)若把20197、8兩月健身消費金額不低于800元的客戶,稱為健身達人,經(jīng)數(shù)據(jù) 處理,現(xiàn)在列聯(lián)表中得到一定的相關(guān)數(shù)據(jù),請補全空格處的數(shù)據(jù),并根據(jù)列聯(lián)表判斷是否有的把握認為健身達人與性別有關(guān)?

健身達人

非健身達人

總計

10

30

總計

2)為吸引顧客,在健身項目之外,該健身館特別推出健身配套營養(yǎng)品的銷售,現(xiàn)有兩種促銷方案.

方案一:每滿800元可立減100元;

方案二:金額超過800元可抽獎三次,每次中獎的概率為,且每次抽獎互不影響,中獎1次打9折,中獎2次打8折,中獎3次打7.

若某人打算購買1000元的營養(yǎng)品,請從實際付款金額的數(shù)學(xué)期望的角度分析應(yīng)該選擇哪種優(yōu)惠方案.

3)在(2)中的方案二中,金額超過800元可抽獎三次,假設(shè)三次中獎結(jié)果互不影響,且三次中獎的概率為,記為銳角的內(nèi)角,

求證:

附:

查看答案和解析>>

科目: 來源: 題型:

【題目】已知平行四邊形中,,,是線段的中點,沿翻折到,使得平面平面.

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線,的焦點為,過點的直線的斜率為,與拋物線交于,兩點,拋物線在點,處的切線分別為,,兩條切線的交點為

1)證明:;

2)若的外接圓與拋物線有四個不同的交點,求直線的斜率的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)討論的單調(diào)性;

(Ⅱ)當時,令,其導(dǎo)函數(shù)為,設(shè)是函數(shù)的兩個零點,判斷是否為的零點?并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習慣,粽子又稱粽籺,俗稱粽子,古稱角黍,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)滿足,若在區(qū)間內(nèi)關(guān)于的方程恰有4個不同的實數(shù)解,則實數(shù)的取值范圍是___________.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù),為自然對數(shù)的底數(shù).

1)求的值;

2)求證:;

3)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四棱錐中,底面是邊長為4的正方形,側(cè)面為正三角形且二面角.

(Ⅰ)設(shè)側(cè)面的交線為,求證:;

(Ⅱ)設(shè)底邊與側(cè)面所成角的為,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知是拋物線的焦點,恰好又是雙曲線的右焦點,雙曲線過點,且其離心率為

(1)求拋物線和雙曲線的標準方程;

(2)已知直線過點,且與拋物線交于,兩點,以為直徑作圓,設(shè)圓軸交于點,,求的最大值.

查看答案和解析>>

同步練習冊答案