科目: 來源: 題型:
【題目】某健身館在2019年7、8兩月推出優(yōu)惠項目吸引了一批客戶.為預(yù)估2020年7、8兩月客戶投入的健身消費金額,健身館隨機抽樣統(tǒng)計了2019年7、8兩月100名客戶的消費金額,分組如下:(單位:元),得到如圖所示的頻率分布直方圖:
(1)若把2019年7、8兩月健身消費金額不低于800元的客戶,稱為“健身達人”,經(jīng)數(shù)據(jù) 處理,現(xiàn)在列聯(lián)表中得到一定的相關(guān)數(shù)據(jù),請補全空格處的數(shù)據(jù),并根據(jù)列聯(lián)表判斷是否有的把握認為“健身達人”與性別有關(guān)?
健身達人 | 非健身達人 | 總計 | |
男 | 10 | ||
女 | 30 | ||
總計 |
(2)為吸引顧客,在健身項目之外,該健身館特別推出健身配套營養(yǎng)品的銷售,現(xiàn)有兩種促銷方案.
方案一:每滿800元可立減100元;
方案二:金額超過800元可抽獎三次,每次中獎的概率為,且每次抽獎互不影響,中獎1次打9折,中獎2次打8折,中獎3次打7折.
若某人打算購買1000元的營養(yǎng)品,請從實際付款金額的數(shù)學(xué)期望的角度分析應(yīng)該選擇哪種優(yōu)惠方案.
(3)在(2)中的方案二中,金額超過800元可抽獎三次,假設(shè)三次中獎結(jié)果互不影響,且三次中獎的概率為,記為銳角的內(nèi)角,
求證:
附:
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線,的焦點為,過點的直線的斜率為,與拋物線交于,兩點,拋物線在點,處的切線分別為,,兩條切線的交點為.
(1)證明:;
(2)若的外接圓與拋物線有四個不同的交點,求直線的斜率的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當時,令,其導(dǎo)函數(shù)為,設(shè)是函數(shù)的兩個零點,判斷是否為的零點?并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)滿足,若在區(qū)間內(nèi)關(guān)于的方程恰有4個不同的實數(shù)解,則實數(shù)的取值范圍是___________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),為的導(dǎo)函數(shù),為自然對數(shù)的底數(shù).
(1)求的值;
(2)求證:;
(3)若對恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐中,底面是邊長為4的正方形,側(cè)面為正三角形且二面角為.
(Ⅰ)設(shè)側(cè)面與的交線為,求證:;
(Ⅱ)設(shè)底邊與側(cè)面所成角的為,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知是拋物線的焦點,恰好又是雙曲線的右焦點,雙曲線過點,且其離心率為.
(1)求拋物線和雙曲線的標準方程;
(2)已知直線過點,且與拋物線交于,兩點,以為直徑作圓,設(shè)圓與軸交于點,,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com