相關(guān)習題
 0  266268  266276  266282  266286  266292  266294  266298  266304  266306  266312  266318  266322  266324  266328  266334  266336  266342  266346  266348  266352  266354  266358  266360  266362  266363  266364  266366  266367  266368  266370  266372  266376  266378  266382  266384  266388  266394  266396  266402  266406  266408  266412  266418  266424  266426  266432  266436  266438  266444  266448  266454  266462  266669 

科目: 來源: 題型:

【題目】2019年是五四運動100周年.五四運動以來的100年,是中國青年一代又一代接續(xù)奮斗、凱歌前行的100年,是中口青年用青春之我創(chuàng)造青春之中國、青春之民族的100.為繼承和發(fā)揚五四精神在青年節(jié)到來之際,學校組織五四運動100周年知識競賽,競賽的一個環(huán)節(jié)由10道題目組成,其中6A類題、4B類題,參賽者需從10道題目中隨機抽取3道作答,現(xiàn)有甲同學參加該環(huán)節(jié)的比賽.

1)求甲同學至少抽到2B類題的概率;

2)若甲同學答對每道A類題的概率都是,答對每道B類題的概率都是,且各題答對與否相互獨立.現(xiàn)已知甲同學恰好抽中2A類題和1B類題,用X表示甲同學答對題目的個數(shù),求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程為為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為.

1)求曲線C的極坐標方程和直線l的直角坐標方程;

2)若射線與曲線C交于點A(不同于極點O,與直線l交于點B,求的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.

(1)求橢圓的方程;

(2)已知定點,是否存在過的直線,使與橢圓交于兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知平面平面,B為線段的中點,,四邊形為正方形,平面平面,,M為棱的中點.

1)若N為線段上的點,且直線平面,試確定點N的位置;

2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】共享單車的投放,方便了市民短途出行,被譽為中國“新四大發(fā)明”之一.某市為研究單車用戶與年齡的相關(guān)程度,隨機調(diào)查了100位成人市民,統(tǒng)計數(shù)據(jù)如下:

不小于40

小于40

合計

單車用戶

12

18

30

非單車用戶

38

32

70

合計

50

50

100

1)從獨立性檢驗角度分析,能否有以上的把握認為該市成人市民是否為單車用戶與年齡是否小于40歲有關(guān);

2)將此樣本的頻率做為概率,從該市單車用戶中隨機抽取3人,記不小于40歲的單車用戶的人數(shù)為,求的分布列與數(shù)學期望.

下面臨界值表供參考:

P

0.15

0.10

0.05

0.25

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓C)的一個焦點與拋物線的焦點相同,,為橢圓的左、右焦點,M為橢圓上任意一點,若的面積最大值為1.

1)求橢圓C的方程;

2)設不過原點的直線l與橢圓C交于不同的兩點A、B,若直線l的斜率是直線、斜率的等比中項,求面積的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù),當時,,給出下列命題:

①當時,;

②函數(shù)2個零點;

的解集為;

,都有.

其中真命題的個數(shù)為(

A.4B.3C.2D.1

查看答案和解析>>

科目: 來源: 題型:

【題目】中國古代儒家要求學生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡稱“六藝”,某高中學校為弘揚“六藝”的傳統(tǒng)文化,分別進行了主題為“禮、樂、射、御、書、數(shù)”六場傳統(tǒng)文化知識競賽,現(xiàn)有甲、乙、丙三位選手進入了前三名的最后角逐,規(guī)定:每場知識競賽前三名的得分都分別為;選手最后得分為各場得分之和,在六場比賽后,已知甲最后得分為分,乙和丙最后得分都是分,且乙在其中一場比賽中獲得第一名,下列說法正確的是( )

A. 乙有四場比賽獲得第三名

B. 每場比賽第一名得分

C. 甲可能有一場比賽獲得第二名

D. 丙可能有一場比賽獲得第一名

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓C)的一個焦點與拋物線的焦點相同,為橢圓的左、右焦點,M為橢圓上任意一點,若的面積最大值為1.

1)求橢圓C的方程;

2)設不過原點的直線l與橢圓C交于不同的兩點A、B,若直線l的斜率是直線、斜率的等比中項,求面積的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知平面,,,

的中點,.

(1)求證:平面;

(2)求證:平面平面;

(3)求此多面體的體積.

查看答案和解析>>

同步練習冊答案