相關(guān)習(xí)題
 0  266356  266364  266370  266374  266380  266382  266386  266392  266394  266400  266406  266410  266412  266416  266422  266424  266430  266434  266436  266440  266442  266446  266448  266450  266451  266452  266454  266455  266456  266458  266460  266464  266466  266470  266472  266476  266482  266484  266490  266494  266496  266500  266506  266512  266514  266520  266524  266526  266532  266536  266542  266550  266669 

科目: 來源: 題型:

【題目】如圖(1),在等腰直角中,斜邊,D的中點(diǎn),將沿折疊得到如圖(2)所示的三棱錐,若三棱錐的外接球的半徑為,則_________.

圖(1 圖(2

查看答案和解析>>

科目: 來源: 題型:

【題目】若函數(shù)在區(qū)間上存在零點(diǎn),則實(shí)數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】十九世紀(jì)末,法國學(xué)者貝特朗在研究幾何概型時(shí)提出了“貝特朗悖論”,即“在一個(gè)圓內(nèi)任意選一條弦,這條弦的弦長長于這個(gè)圓的內(nèi)接等邊三角形邊長的概率是多少?”貝特朗用“隨機(jī)半徑”、“隨機(jī)端點(diǎn)”、“隨機(jī)中點(diǎn)”三個(gè)合理的求解方法,但結(jié)果都不相同.該悖論的矛頭直擊概率概念本身,強(qiáng)烈地刺激了概率論基礎(chǔ)的嚴(yán)格化.已知“隨機(jī)端點(diǎn)”的方法如下:設(shè)A為圓O上一個(gè)定點(diǎn),在圓周上隨機(jī)取一點(diǎn)B,連接AB,所得弦長AB大于圓O的內(nèi)接等邊三角形邊長的概率.則由“隨機(jī)端點(diǎn)”求法所求得的概率為(  )

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】第三屆移動(dòng)互聯(lián)創(chuàng)新大賽,于2017年3月~10月期間舉行,為了選出優(yōu)秀選手,某高校先在計(jì)算機(jī)科學(xué)系選出一種子選手,再從全校征集出3位志愿者分別與進(jìn)行一場技術(shù)對抗賽,根據(jù)以往經(jīng)驗(yàn), 與這三位志愿者進(jìn)行比賽一場獲勝的概率分別為,且各場輸贏互不影響.

(1)求甲恰好獲勝兩場的概率;

(2)求甲獲勝場數(shù)的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知數(shù)列,其中

(1)若滿足

①當(dāng),且時(shí),求的值;

②若存在互不相等的正整數(shù),滿足,且成等差數(shù)列,求的值

(2)設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前n項(xiàng)和為,,,且恒成立,求的最小值

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

(1)若,求處的切線方程;

(2)若對于任意的正數(shù),恒成立,求實(shí)數(shù)的值;

(3)若函數(shù)存在兩個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,某小區(qū)內(nèi)有兩條互相垂直的道路,平面直角坐標(biāo)系的第一象限有一塊空地,其邊界是函數(shù)的圖象,前一段曲線是函數(shù)圖象的一部分,后一段是一條線段.測得的距離為8米,到的距離為16米,長為20米.

(1)求函數(shù)的解析式;

(2)現(xiàn)要在此地建一個(gè)社區(qū)活動(dòng)中心,平面圖為梯形(其中為兩底邊),問:梯形的高為多少米時(shí),該社區(qū)活動(dòng)中心的占地面積最大,并求出最大面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】某人某天的工作是駕車從地出發(fā),到兩地辦事,最后返回地,,三地之間各路段行駛時(shí)間及擁堵概率如下表

路段

正常行駛所用時(shí)間(小時(shí))

上午擁堵概率

下午擁堵概率

1

03

06

2

02

07

3

03

09

若在某路段遇到擁堵,則在該路段行駛時(shí)間需要延長1小時(shí).

現(xiàn)有如下兩個(gè)方案:

方案甲:上午從地出發(fā)到地辦事然后到達(dá)地,下午從地辦事后返回地;

方案乙:上午從地出發(fā)到地辦事,下午從地出發(fā)到達(dá)地,辦完事后返回地.

1)若此人早上8點(diǎn)從地出發(fā),在各地辦事及午餐的累積時(shí)間為2小時(shí),且采用方案甲,求他當(dāng)日18點(diǎn)或18點(diǎn)之前能返回地的概率.

2)甲乙兩個(gè)方案中,哪個(gè)方案有利于辦完事后更早返回地?請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為點(diǎn)是橢圓上任意一點(diǎn),且的最大值為4,橢圓的離心率與雙曲線的離心率互為倒數(shù).

1)求橢圓方程;

2)設(shè)點(diǎn),過點(diǎn)作直線與圓相切且分別交橢圓于,求直線的斜率.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面多邊形中,四邊形是邊長為2的正方形,四邊形為等腰梯形,的中點(diǎn), ,現(xiàn)將梯形沿折疊,使平面平面.

1)求證:

2)求與平面成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案