相關(guān)習(xí)題
 0  33900  33908  33914  33918  33924  33926  33930  33936  33938  33944  33950  33954  33956  33960  33966  33968  33974  33978  33980  33984  33986  33990  33992  33994  33995  33996  33998  33999  34000  34002  34004  34008  34010  34014  34016  34020  34026  34028  34034  34038  34040  34044  34050  34056  34058  34064  34068  34070  34076  34080  34086  34094  266669 

科目: 來源: 題型:

i是虛數(shù)單位,復(fù)數(shù)z=
2+3i
-3+2i
的虛部是( 。

查看答案和解析>>

科目: 來源: 題型:

在甲袋中有10個螺母,其中9個正品,1個次品;乙袋中有10個螺帽,其中8個正品,2個次品,現(xiàn)要抽取一套正品螺栓(即正品螺母、正品螺帽各一個),若隨機不放回地抽取,先定螺母,后定螺帽.   

    (I)求總共抽取的次數(shù)恰好為3的概率;

    (Ⅱ)求總共抽取的次數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

以橢圓C:
x2
a2
+
y2
b2
=1 (a>b>0)
的中心O為圓心,
a2+b2
為半徑的圓稱為該橢圓的“準(zhǔn)圓”.設(shè)橢圓C的左頂點為P,左焦點為F,上頂點為Q,且滿足|PQ|=2,S△OPQ=
6
2
S△OFQ
(Ⅰ)求橢圓ABC及其“準(zhǔn)圓”的方程;
(Ⅱ)若橢圓C的“準(zhǔn)圓”的一條弦ED(不與坐標(biāo)軸垂直)與橢圓C交于M、N兩點,試證明:當(dāng)OM•ON=0時,試問弦ED的長是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

省環(huán)保研究所對市中心每天環(huán)境放射性污染情況進行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)f(x)與時刻x(時)的關(guān)系為f(x)=|
x
x2+1
-a|+2a+
2
3
,x∈[0,24],其中a是與氣象有關(guān)的參數(shù),且a∈[0,
1
2
],若用每天f(x)的最大值作為當(dāng)天的綜合放射性污染指數(shù),并記作M(a).
(1)令t=
x
x2+1
,x∈[0,24],求t的取值范圍;
(2)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過2,試問目前市中心的綜合放射性污染指數(shù)是否超標(biāo)?

查看答案和解析>>

科目: 來源: 題型:

(2012•重慶)如圖,在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D為AB的中點
(Ⅰ)求點C到平面A1ABB1的距離;
(Ⅱ)若AB1⊥A1C,求二面角A1-CD-C1的平面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

(2012•深圳二模)深圳市某校中學(xué)生籃球隊假期集訓(xùn),集訓(xùn)前共有6個籃球,其中3個是新球(即沒有用過的球),3個是舊球(即至少用過一次的球).每次訓(xùn)練,都從中任意取出2個球,用完后放回.
(1)設(shè)第一次訓(xùn)練時取到的新球個數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望;
(2)求第二次訓(xùn)練時恰好取到一個新球的概率.

查看答案和解析>>

科目: 來源: 題型:

(2013•烏魯木齊一模)某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此進行了5次試驗.根據(jù)收集到的數(shù)據(jù)(如表),由最小二乘法求得回歸方程
y
=0.67x+54.9


現(xiàn)發(fā)現(xiàn)表中有一個數(shù)據(jù)模糊看不清,請你推斷出該數(shù)據(jù)的值為
68
68

查看答案和解析>>

科目: 來源: 題型:

(2011•東城區(qū)二模)對任意x∈R,函數(shù)f(x)滿足f(x+1)=
f(x)-[f(x)]2
+
1
2
,設(shè)an=[f(n)]2-f(n),數(shù)列{an}的前15項的和為-
31
16
,則f(15)=
3
4
3
4

查看答案和解析>>

科目: 來源: 題型:

(2011•東城區(qū)二模)已知點P(2,t)在不等式組
x-y-4≤0
x+y-3≤0
表示的平面區(qū)域內(nèi),則點P(2,t)到直線3x+4y+10=0距離的最大值為
4
4

查看答案和解析>>

科目: 來源: 題型:

已知⊙O1和⊙O2交于點C和D,⊙O1上的點P處的切線交⊙O2于A、B點,交直線CD于點E,M是⊙O2上的一點,若PE=2,EA=1,∠AMB=30°,那么⊙O2的半徑為
3
3

查看答案和解析>>

同步練習(xí)冊答案