如圖22所示,由A、B兩平行板構(gòu)成的電容器,電容為C,原來不帶電。電容器的A板接地,并且中心有一個小孔,通過這個小孔向電容器中射入電子,射入的方向垂直于極板,射入的速度為v0。如果電子的發(fā)射是一個一個單獨(dú)進(jìn)行的,即第一個電子到達(dá)B板后再發(fā)射第二個電子,并且所有到達(dá)B板的電子都留在B板上。隨著電子的射入,兩極板間的電勢差逐漸增加,直至達(dá)到一個穩(wěn)定值,已知電子的質(zhì)量為m、電量為e,電子所受的重力可忽略不計,A、B兩板的距離為L

(1)有n個電子到達(dá)B板上,這時兩板間電場的場強(qiáng)E多大?

(2)最多能有多少個電子到達(dá)B板?

(3)到達(dá)B板的第1個電子在兩板間運(yùn)動的時間和最后一個電子在兩板間運(yùn)動的時間相差多少?

解:(1)兩極間電壓 U=Q/C=ne/C  (1分)  內(nèi)部場強(qiáng)E=U/L   (1分)

        解出 E=ne/CL     (1分)

(2)設(shè)最多能有n’個電子到達(dá)B板,則第n’個電子在到達(dá)B板時速度恰減為0。

滿足     (1分)    解出     (1分)

(3)第1個電子在兩板間作勻速運(yùn)動,運(yùn)動時間為   (1分)

     最后1個電子在兩板間作勻減速運(yùn)動,到達(dá)B板時速度恰為0,運(yùn)動時間為

        (1分)二者時間之差為  (1分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:

有四個運(yùn)動的物體A、B、C、D從原點(diǎn)同時向同一方向作直線運(yùn)動,物體A、B運(yùn)動的x-t圖象如下圖甲所示,物體C、D運(yùn)動的v-t圖象如圖乙所示,由圖象可以判斷出物體A做的是
勻速直線
勻速直線
運(yùn)動;物體C做的是
初速為零的勻加速直線
初速為零的勻加速直線
運(yùn)動(填“勻速直線”,“勻加速直線”或“勻減速直線”).在0-3s的時間內(nèi),物體B運(yùn)動的位移為
10
10
m,物體D距C的最遠(yuǎn)距離為
22.5
22.5
m.

查看答案和解析>>

科目:高中物理 來源: 題型:

如圖22所示,滑塊質(zhì)量為m,與水平地面間的動摩擦因數(shù)為0.1,它以的初速度由A點(diǎn)開始向B點(diǎn)滑行,AB=5R,并滑上光滑的半徑為R圓弧BC,在C點(diǎn)正上方有一離C點(diǎn)高度也為R的旋轉(zhuǎn)平臺,沿平臺直徑方向開有兩個離軸心距離相等的小孔P、Q,孔徑大于滑塊的大小,旋轉(zhuǎn)時兩孔均能達(dá)到C點(diǎn)的正上方。求

(1)滑塊剛到B處的速度;

(2)若滑塊滑過C點(diǎn)后穿過P孔,求滑塊過P點(diǎn)后還能上升的最大高度;

(3)若滑塊穿過P孔后,又恰能從Q孔落下,則平臺轉(zhuǎn)動的角速度ω應(yīng)滿足什么條件?

查看答案和解析>>

科目:高中物理 來源: 題型:

一定質(zhì)量理想氣體的p-V圖象如圖11所示,其中ab為等容過程,bc為等壓過程,ca為等溫過程,已知?dú)怏w在狀態(tài)a時的溫度Ta=300K,在狀態(tài)b時的體積Vb=22.4L求:

氣體在狀態(tài)c時的體積Vc;

試比較氣體由狀態(tài)b到狀態(tài)c過程從外界吸收的熱量Q與對外做功W的大小關(guān)系,并簡要說明理由。

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中物理 來源: 題型:閱讀理解

第一部分  力&物體的平衡

第一講 力的處理

一、矢量的運(yùn)算

1、加法

表達(dá): +  =  。

名詞:為“和矢量”。

法則:平行四邊形法則。如圖1所示。

和矢量大小:c =  ,其中α為的夾角。

和矢量方向:之間,和夾角β= arcsin

2、減法

表達(dá): =  。

名詞:為“被減數(shù)矢量”,為“減數(shù)矢量”,為“差矢量”。

法則:三角形法則。如圖2所示。將被減數(shù)矢量和減數(shù)矢量的起始端平移到一點(diǎn),然后連接兩時量末端,指向被減數(shù)時量的時量,即是差矢量。

差矢量大小:a =  ,其中θ為的夾角。

差矢量的方向可以用正弦定理求得。

一條直線上的矢量運(yùn)算是平行四邊形和三角形法則的特例。

例題:已知質(zhì)點(diǎn)做勻速率圓周運(yùn)動,半徑為R ,周期為T ,求它在T內(nèi)和在T內(nèi)的平均加速度大小。

解說:如圖3所示,A到B點(diǎn)對應(yīng)T的過程,A到C點(diǎn)對應(yīng)T的過程。這三點(diǎn)的速度矢量分別設(shè)為、。

根據(jù)加速度的定義 得:

由于有兩處涉及矢量減法,設(shè)兩個差矢量  , ,根據(jù)三角形法則,它們在圖3中的大小、方向已繪出(的“三角形”已被拉伸成一條直線)。

本題只關(guān)心各矢量的大小,顯然:

 =  =  =  ,且: =   = 2

所以: =  =  , =  =  

(學(xué)生活動)觀察與思考:這兩個加速度是否相等,勻速率圓周運(yùn)動是不是勻變速運(yùn)動?

答:否;不是。

3、乘法

矢量的乘法有兩種:叉乘和點(diǎn)乘,和代數(shù)的乘法有著質(zhì)的不同。

⑴ 叉乘

表達(dá):× = 

名詞:稱“矢量的叉積”,它是一個新的矢量。

叉積的大。篶 = absinα,其中α為的夾角。意義:的大小對應(yīng)由作成的平行四邊形的面積。

叉積的方向:垂直確定的平面,并由右手螺旋定則確定方向,如圖4所示。

顯然,××,但有:×= -×

⑵ 點(diǎn)乘

表達(dá):· = c

名詞:c稱“矢量的點(diǎn)積”,它不再是一個矢量,而是一個標(biāo)量。

點(diǎn)積的大小:c = abcosα,其中α為的夾角。

二、共點(diǎn)力的合成

1、平行四邊形法則與矢量表達(dá)式

2、一般平行四邊形的合力與分力的求法

余弦定理(或分割成RtΔ)解合力的大小

正弦定理解方向

三、力的分解

1、按效果分解

2、按需要——正交分解

第二講 物體的平衡

一、共點(diǎn)力平衡

1、特征:質(zhì)心無加速度。

2、條件:Σ = 0 ,或  = 0 , = 0

例題:如圖5所示,長為L 、粗細(xì)不均勻的橫桿被兩根輕繩水平懸掛,繩子與水平方向的夾角在圖上已標(biāo)示,求橫桿的重心位置。

解說:直接用三力共點(diǎn)的知識解題,幾何關(guān)系比較簡單。

答案:距棒的左端L/4處。

(學(xué)生活動)思考:放在斜面上的均質(zhì)長方體,按實際情況分析受力,斜面的支持力會通過長方體的重心嗎?

解:將各處的支持力歸納成一個N ,則長方體受三個力(G 、f 、N)必共點(diǎn),由此推知,N不可能通過長方體的重心。正確受力情形如圖6所示(通常的受力圖是將受力物體看成一個點(diǎn),這時,N就過重心了)。

答:不會。

二、轉(zhuǎn)動平衡

1、特征:物體無轉(zhuǎn)動加速度。

2、條件:Σ= 0 ,或ΣM+ =ΣM- 

如果物體靜止,肯定會同時滿足兩種平衡,因此用兩種思路均可解題。

3、非共點(diǎn)力的合成

大小和方向:遵從一條直線矢量合成法則。

作用點(diǎn):先假定一個等效作用點(diǎn),然后讓所有的平行力對這個作用點(diǎn)的和力矩為零。

第三講 習(xí)題課

1、如圖7所示,在固定的、傾角為α斜面上,有一塊可以轉(zhuǎn)動的夾板(β不定),夾板和斜面夾著一個質(zhì)量為m的光滑均質(zhì)球體,試求:β取何值時,夾板對球的彈力最小。

解說:法一,平行四邊形動態(tài)處理。

對球體進(jìn)行受力分析,然后對平行四邊形中的矢量G和N1進(jìn)行平移,使它們構(gòu)成一個三角形,如圖8的左圖和中圖所示。

由于G的大小和方向均不變,而N1的方向不可變,當(dāng)β增大導(dǎo)致N2的方向改變時,N2的變化和N1的方向變化如圖8的右圖所示。

顯然,隨著β增大,N1單調(diào)減小,而N2的大小先減小后增大,當(dāng)N2垂直N1時,N2取極小值,且N2min = Gsinα。

法二,函數(shù)法。

看圖8的中間圖,對這個三角形用正弦定理,有:

 =  ,即:N2 =  ,β在0到180°之間取值,N2的極值討論是很容易的。

答案:當(dāng)β= 90°時,甲板的彈力最小。

2、把一個重為G的物體用一個水平推力F壓在豎直的足夠高的墻壁上,F(xiàn)隨時間t的變化規(guī)律如圖9所示,則在t = 0開始物體所受的摩擦力f的變化圖線是圖10中的哪一個?

解說:靜力學(xué)旨在解決靜態(tài)問題和準(zhǔn)靜態(tài)過程的問題,但本題是一個例外。物體在豎直方向的運(yùn)動先加速后減速,平衡方程不再適用。如何避開牛頓第二定律,是本題授課時的難點(diǎn)。

靜力學(xué)的知識,本題在于區(qū)分兩種摩擦的不同判據(jù)。

水平方向合力為零,得:支持力N持續(xù)增大。

物體在運(yùn)動時,滑動摩擦力f = μN(yùn) ,必持續(xù)增大。但物體在靜止后靜摩擦力f′≡ G ,與N沒有關(guān)系。

對運(yùn)動過程加以分析,物體必有加速和減速兩個過程。據(jù)物理常識,加速時,f < G ,而在減速時f > G 。

答案:B 。

3、如圖11所示,一個重量為G的小球套在豎直放置的、半徑為R的光滑大環(huán)上,另一輕質(zhì)彈簧的勁度系數(shù)為k ,自由長度為L(L<2R),一端固定在大圓環(huán)的頂點(diǎn)A ,另一端與小球相連。環(huán)靜止平衡時位于大環(huán)上的B點(diǎn)。試求彈簧與豎直方向的夾角θ。

解說:平行四邊形的三個矢量總是可以平移到一個三角形中去討論,解三角形的典型思路有三種:①分割成直角三角形(或本來就是直角三角形);②利用正、余弦定理;③利用力學(xué)矢量三角形和某空間位置三角形相似。本題旨在貫徹第三種思路。

分析小球受力→矢量平移,如圖12所示,其中F表示彈簧彈力,N表示大環(huán)的支持力。

(學(xué)生活動)思考:支持力N可不可以沿圖12中的反方向?(正交分解看水平方向平衡——不可以。)

容易判斷,圖中的灰色矢量三角形和空間位置三角形ΔAOB是相似的,所以:

                                   ⑴

由胡克定律:F = k(- R)                ⑵

幾何關(guān)系:= 2Rcosθ                     ⑶

解以上三式即可。

答案:arccos 。

(學(xué)生活動)思考:若將彈簧換成勁度系數(shù)k′較大的彈簧,其它條件不變,則彈簧彈力怎么變?環(huán)的支持力怎么變?

答:變;不變。

(學(xué)生活動)反饋練習(xí):光滑半球固定在水平面上,球心O的正上方有一定滑輪,一根輕繩跨過滑輪將一小球從圖13所示的A位置開始緩慢拉至B位置。試判斷:在此過程中,繩子的拉力T和球面支持力N怎樣變化?

解:和上題完全相同。

答:T變小,N不變。

4、如圖14所示,一個半徑為R的非均質(zhì)圓球,其重心不在球心O點(diǎn),先將它置于水平地面上,平衡時球面上的A點(diǎn)和地面接觸;再將它置于傾角為30°的粗糙斜面上,平衡時球面上的B點(diǎn)與斜面接觸,已知A到B的圓心角也為30°。試求球體的重心C到球心O的距離。

解說:練習(xí)三力共點(diǎn)的應(yīng)用。

根據(jù)在平面上的平衡,可知重心C在OA連線上。根據(jù)在斜面上的平衡,支持力、重力和靜摩擦力共點(diǎn),可以畫出重心的具體位置。幾何計算比較簡單。

答案:R 。

(學(xué)生活動)反饋練習(xí):靜摩擦足夠,將長為a 、厚為b的磚塊碼在傾角為θ的斜面上,最多能碼多少塊?

解:三力共點(diǎn)知識應(yīng)用。

答: 。

4、兩根等長的細(xì)線,一端拴在同一懸點(diǎn)O上,另一端各系一個小球,兩球的質(zhì)量分別為m1和m2 ,已知兩球間存在大小相等、方向相反的斥力而使兩線張開一定角度,分別為45和30°,如圖15所示。則m1 : m2??為多少?

解說:本題考查正弦定理、或力矩平衡解靜力學(xué)問題。

對兩球進(jìn)行受力分析,并進(jìn)行矢量平移,如圖16所示。

首先注意,圖16中的灰色三角形是等腰三角形,兩底角相等,設(shè)為α。

而且,兩球相互作用的斥力方向相反,大小相等,可用同一字母表示,設(shè)為F 。

對左邊的矢量三角形用正弦定理,有:

 =          ①

同理,對右邊的矢量三角形,有: =                                ②

解①②兩式即可。

答案:1 : 。

(學(xué)生活動)思考:解本題是否還有其它的方法?

答:有——將模型看成用輕桿連成的兩小球,而將O點(diǎn)看成轉(zhuǎn)軸,兩球的重力對O的力矩必然是平衡的。這種方法更直接、簡便。

應(yīng)用:若原題中繩長不等,而是l1 :l2 = 3 :2 ,其它條件不變,m1與m2的比值又將是多少?

解:此時用共點(diǎn)力平衡更加復(fù)雜(多一個正弦定理方程),而用力矩平衡則幾乎和“思考”完全相同。

答:2 :3 。

5、如圖17所示,一個半徑為R的均質(zhì)金屬球上固定著一根長為L的輕質(zhì)細(xì)桿,細(xì)桿的左端用鉸鏈與墻壁相連,球下邊墊上一塊木板后,細(xì)桿恰好水平,而木板下面是光滑的水平面。由于金屬球和木板之間有摩擦(已知摩擦因素為μ),所以要將木板從球下面向右抽出時,至少需要大小為F的水平拉力。試問:現(xiàn)要將木板繼續(xù)向左插進(jìn)一些,至少需要多大的水平推力?

解說:這是一個典型的力矩平衡的例題。

以球和桿為對象,研究其對轉(zhuǎn)軸O的轉(zhuǎn)動平衡,設(shè)木板拉出時給球體的摩擦力為f ,支持力為N ,重力為G ,力矩平衡方程為:

f R + N(R + L)= G(R + L)           

球和板已相對滑動,故:f = μN(yùn)        ②

解①②可得:f = 

再看木板的平衡,F(xiàn) = f 。

同理,木板插進(jìn)去時,球體和木板之間的摩擦f′=  = F′。

答案: 。

第四講 摩擦角及其它

一、摩擦角

1、全反力:接觸面給物體的摩擦力與支持力的合力稱全反力,一般用R表示,亦稱接觸反力。

2、摩擦角:全反力與支持力的最大夾角稱摩擦角,一般用φm表示。

此時,要么物體已經(jīng)滑動,必有:φm = arctgμ(μ為動摩擦因素),稱動摩擦力角;要么物體達(dá)到最大運(yùn)動趨勢,必有:φms = arctgμs(μs為靜摩擦因素),稱靜摩擦角。通常處理為φm = φms 

3、引入全反力和摩擦角的意義:使分析處理物體受力時更方便、更簡捷。

二、隔離法與整體法

1、隔離法:當(dāng)物體對象有兩個或兩個以上時,有必要各個擊破,逐個講每個個體隔離開來分析處理,稱隔離法。

在處理各隔離方程之間的聯(lián)系時,應(yīng)注意相互作用力的大小和方向關(guān)系。

2、整體法:當(dāng)各個體均處于平衡狀態(tài)時,我們可以不顧個體的差異而講多個對象看成一個整體進(jìn)行分析處理,稱整體法。

應(yīng)用整體法時應(yīng)注意“系統(tǒng)”、“內(nèi)力”和“外力”的涵義。

三、應(yīng)用

1、物體放在水平面上,用與水平方向成30°的力拉物體時,物體勻速前進(jìn)。若此力大小不變,改為沿水平方向拉物體,物體仍能勻速前進(jìn),求物體與水平面之間的動摩擦因素μ。

解說:這是一個能顯示摩擦角解題優(yōu)越性的題目?梢酝ㄟ^不同解法的比較讓學(xué)生留下深刻印象。

法一,正交分解。(學(xué)生分析受力→列方程→得結(jié)果。)

法二,用摩擦角解題。

引進(jìn)全反力R ,對物體兩個平衡狀態(tài)進(jìn)行受力分析,再進(jìn)行矢量平移,得到圖18中的左圖和中間圖(注意:重力G是不變的,而全反力R的方向不變、F的大小不變),φm指摩擦角。

再將兩圖重疊成圖18的右圖。由于灰色的三角形是一個頂角為30°的等腰三角形,其頂角的角平分線必垂直底邊……故有:φm = 15°。

最后,μ= tgφm 。

答案:0.268 。

(學(xué)生活動)思考:如果F的大小是可以選擇的,那么能維持物體勻速前進(jìn)的最小F值是多少?

解:見圖18,右圖中虛線的長度即Fmin ,所以,F(xiàn)min = Gsinφm 。

答:Gsin15°(其中G為物體的重量)。

2、如圖19所示,質(zhì)量m = 5kg的物體置于一粗糙斜面上,并用一平行斜面的、大小F = 30N的推力推物體,使物體能夠沿斜面向上勻速運(yùn)動,而斜面體始終靜止。已知斜面的質(zhì)量M = 10kg ,傾角為30°,重力加速度g = 10m/s2 ,求地面對斜面體的摩擦力大小。

解說:

本題旨在顯示整體法的解題的優(yōu)越性。

法一,隔離法。簡要介紹……

法二,整體法。注意,滑塊和斜面隨有相對運(yùn)動,但從平衡的角度看,它們是完全等價的,可以看成一個整體。

做整體的受力分析時,內(nèi)力不加考慮。受力分析比較簡單,列水平方向平衡方程很容易解地面摩擦力。

答案:26.0N 。

(學(xué)生活動)地面給斜面體的支持力是多少?

解:略。

答:135N 。

應(yīng)用:如圖20所示,一上表面粗糙的斜面體上放在光滑的水平地面上,斜面的傾角為θ。另一質(zhì)量為m的滑塊恰好能沿斜面勻速下滑。若用一推力F作用在滑塊上,使之能沿斜面勻速上滑,且要求斜面體靜止不動,就必須施加一個大小為P = 4mgsinθcosθ的水平推力作用于斜面體。使?jié)M足題意的這個F的大小和方向。

解說:這是一道難度較大的靜力學(xué)題,可以動用一切可能的工具解題。

法一:隔離法。

由第一個物理情景易得,斜面于滑塊的摩擦因素μ= tgθ

對第二個物理情景,分別隔離滑塊和斜面體分析受力,并將F沿斜面、垂直斜面分解成Fx和Fy ,滑塊與斜面之間的兩對相互作用力只用兩個字母表示(N表示正壓力和彈力,f表示摩擦力),如圖21所示。

對滑塊,我們可以考查沿斜面方向和垂直斜面方向的平衡——

Fx = f + mgsinθ

Fy + mgcosθ= N

且 f = μN(yùn) = Ntgθ

綜合以上三式得到:

Fx = Fytgθ+ 2mgsinθ               ①

對斜面體,只看水平方向平衡就行了——

P = fcosθ+ Nsinθ

即:4mgsinθcosθ=μN(yùn)cosθ+ Nsinθ

代入μ值,化簡得:Fy = mgcosθ      ②

②代入①可得:Fx = 3mgsinθ

最后由F =解F的大小,由tgα= 解F的方向(設(shè)α為F和斜面的夾角)。

答案:大小為F = mg,方向和斜面夾角α= arctg()指向斜面內(nèi)部。

法二:引入摩擦角和整體法觀念。

仍然沿用“法一”中關(guān)于F的方向設(shè)置(見圖21中的α角)。

先看整體的水平方向平衡,有:Fcos(θ- α) = P                                   ⑴

再隔離滑塊,分析受力時引進(jìn)全反力R和摩擦角φ,由于簡化后只有三個力(R、mg和F),可以將矢量平移后構(gòu)成一個三角形,如圖22所示。

在圖22右邊的矢量三角形中,有: =      ⑵

注意:φ= arctgμ= arctg(tgθ) = θ                                              ⑶

解⑴⑵⑶式可得F和α的值。

查看答案和解析>>

同步練習(xí)冊答案