1932年,勞倫斯和利文斯設(shè)計(jì)出了回旋加速器;匦铀倨鞯墓ぷ髟砣缦聢D(甲)所示,置于高真空中的D形金屬盒半徑為R,兩盒間的狹縫很小,帶電粒子穿過的時間可以忽略不計(jì)。磁感應(yīng)強(qiáng)度為B的勻強(qiáng)磁場與盒面垂直。A處粒子源產(chǎn)生的粒子,質(zhì)量為m、電荷量為+q,初速度為0,在加速器中被加速,加速電壓為U。加速過程中不考慮相對論效應(yīng)和重力作用。

(1)求粒子第1次和第2次經(jīng)過兩D形盒間狹縫后軌道半徑之比;

(2)求粒子從靜止開始加速到出口處所需的時間t和粒子獲得的最大動能Ekm;

(3)近年來,大中型粒子加速器往往采用多種加速器的串接組合。例如由直線加速器做為預(yù)加速器,獲得中間能量,再注入回旋加速器獲得最終能量。n個長度逐個增大的金屬圓筒和一個靶,它們沿軸線排列成一串,如圖(乙)所示(圖中只畫出了六個圓筒,作為示意)。各筒相間地連接到頻率為f、最大電壓值為U的正弦交流電源的兩端。整個裝置放在高真空容器中。圓筒的兩底面中心開有小孔,F(xiàn)有一電量為q、質(zhì)量為m的正離子沿軸線射入圓筒,并將在圓筒間的縫隙處受到電場力的作用而加速(設(shè)圓筒內(nèi)部沒有電場)。縫隙的寬度很小,離子穿過縫隙的時間可以不計(jì)。已知離子進(jìn)入第一個圓筒左端的速度為v1,且此時第一、二兩個圓筒間的電勢差12=-U。為為使打到靶上的離子獲得最大能量,各個圓筒的長度應(yīng)滿足什么條件?并求出在這種情況下打到靶上的離子的能量。

(1)設(shè)粒子第1次經(jīng)過狹縫后的半徑為r1,速度為v1,     qU=mv12      (1分)

qv1B=m     (1分)                  解得: 

同理,粒子第2次經(jīng)過狹縫后的半徑r1:r2  =1:         (2分)

(2)粒子在磁場中運(yùn)動一個周期,被電場加速兩次。設(shè)粒子到出口處被加速了n次,

 nqU=     (2分)qvmB=m  得vm=   (2分)

解得n=  帶電粒子在磁場中運(yùn)動的周期為 則粒子在磁場中運(yùn)動的總時間t==  (2分)所以,粒子獲得的最大動能Ekm       (2分)

(3)為使正離子獲得最大能量,要求離子每次穿越縫隙時,前一個圓筒的電勢比后一個圓筒的電勢高U,這就要求離子穿過每個圓筒的時間都恰好等于交流電的半個周期。由于圓筒內(nèi)無電場,離子在筒內(nèi)做勻速運(yùn)動。設(shè)vn為離子在第n個圓筒內(nèi)的速度,則有

n個圓筒的長度為                (2分)

     

n個圓筒的長度應(yīng)滿足的條件為n=1,2,3,…2)(2分)

打到靶上的離子的能量為 (n=1,2,3,……)。3分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:閱讀理解

(2012?昌平區(qū)二模)1932年,勞倫斯和利文斯設(shè)計(jì)出了回旋加速器.回旋加速器的工作原理如圖(甲)所示,置于高真空中的D形金屬盒半徑為R,兩盒間的狹縫很小,帶電粒子穿過的時間可以忽略不計(jì).磁感應(yīng)強(qiáng)度為B的勻強(qiáng)磁場與盒面垂直.A處粒子源產(chǎn)生的粒子,質(zhì)量為m、電荷量為+q,初速度為0,在加速器中被加速,加速電壓為U.加速過程中不考慮相對論效應(yīng)和重力作用.
(1)求粒子第1次和第2次經(jīng)過兩D形盒間狹縫后軌道半徑之比;
(2)求粒子從靜止開始加速到出口處所需的時間t和粒子獲得的最大動能Ekm;

(3)近年來,大中型粒子加速器往往采用多種加速器的串接組合.例如由直線加速器做為預(yù)加速器,獲得中間能量,再注入回旋加速器獲得最終能量.n個長度逐個增大的金屬圓筒和一個靶,它們沿軸線排列成一串,如圖(乙)所示(圖中只畫出了六個圓筒,作為示意).各筒相間地連接到頻率為f、最大電壓值為U的正弦交流電源的兩端.整個裝置放在高真空容器中.圓筒的兩底面中心開有小孔.現(xiàn)有一電量為q、質(zhì)量為m的正離子沿軸線射入圓筒,并將在圓筒間的縫隙處受到電場力的作用而加速(設(shè)圓筒內(nèi)部沒有電場).縫隙的寬度很小,離子穿過縫隙的時間可以不計(jì).已知離子進(jìn)入第一個圓筒左端的速度為v1,且此時第一、二兩個圓筒間的電勢差U1-U2=-U.為使打到靶上的離子獲得最大能量,各個圓筒的長度應(yīng)滿足什么條件?并求出在這種情況下打到靶上的離子的能量.

查看答案和解析>>

科目:高中物理 來源: 題型:

(2009?江蘇)1932年,勞倫斯和利文斯設(shè)計(jì)出了回旋加速器.回旋加速器的工作原理如圖所示,置于高真空中的D形金屬盒半徑為R,兩盒間的狹縫很小,帶電粒子穿過的時間可以忽略不計(jì).磁感應(yīng)強(qiáng)度為B的勻強(qiáng)磁場與盒面垂直.A處粒子源產(chǎn)生的粒子,質(zhì)量為m、電荷量為+q,在加速器中被加速,加速電壓為U.加速過程中不考慮相對論效應(yīng)和重力作用.
(1)求粒子第2次和第1次經(jīng)過兩D形盒間狹縫后軌道半徑之比;
(2)求粒子從靜止開始加速到出口處所需的時間t;
(3)實(shí)際使用中,磁感應(yīng)強(qiáng)度和加速電場頻率都有最大值的限制.若某一加速器磁感應(yīng)強(qiáng)度和加速電場頻率的最大值分別為Bm、fm,試討論粒子能獲得的最大動能Ekm

查看答案和解析>>

科目:高中物理 來源: 題型:

精英家教網(wǎng)1932年,勞倫斯和利文斯設(shè)計(jì)出了回旋加速器.回旋加速器的工作原理如圖所示,置于高真空中的D形金屬盒半徑為R,兩盒間的狹縫很小,帶電粒子穿過的時間可以忽略不計(jì).磁感應(yīng)強(qiáng)度為B的勻強(qiáng)磁場與盒面垂直.A處粒子源產(chǎn)生的粒子,質(zhì)量為m、電荷量為+q,在加速器中被加速,加速電壓為U.加速過程中不考慮重力作用.
(1)求粒子第2次和第1次經(jīng)過兩D形盒間狹縫后軌  道半徑之比;
(2)求粒子從靜止開始加速到出口處所需的時間t;
(3)討論粒子能獲得的動能Ek跟加速器磁感應(yīng)強(qiáng)度和加速電場頻率之間關(guān)系.

查看答案和解析>>

科目:高中物理 來源: 題型:

1932年,勞倫斯和利文斯設(shè)計(jì)出了回旋加速器.回旋加速器的工作原理如圖(甲)所示,它由兩個鋁制D型金屬扁盒組成,兩個D形盒正中間開有一條狹縫;兩個D型盒處在勻強(qiáng)磁場中并接有高頻交變電壓.圖(乙)為俯視圖,在D型盒上半面中心S處有一正粒子源,它發(fā)出的帶電粒子,經(jīng)狹縫電壓加速后,進(jìn)入D型盒中,在磁場力的作用下運(yùn)動半周,再經(jīng)狹縫電壓加速;為保證粒子每次經(jīng)過狹縫都被加速,應(yīng)設(shè)法使交變電壓的周期與粒子在狹縫及磁場中運(yùn)動的周期一致.如此周而復(fù)始,最后到達(dá)D型盒的邊緣,獲得最大速度后射出.
置于高真空中的D形金屬盒的最大軌道半徑為R,兩盒間的狹縫很小,帶電粒子穿過的時間可以忽略不計(jì).粒子源S射出的是質(zhì)子流,初速度不計(jì),D形盒的交流電壓為U,靜止質(zhì)子經(jīng)電場加速后,進(jìn)入D形盒,磁場的磁感應(yīng)強(qiáng)度B,質(zhì)子的質(zhì)量為m,電量為q,求:
精英家教網(wǎng)
(1)質(zhì)子最初進(jìn)入D形盒的動能多大?
(2)質(zhì)子經(jīng)回旋加速器最后得到的動能多大?
(3)要使質(zhì)子每次經(jīng)過電場都被加速,則加交流電源的周期是多少?

查看答案和解析>>

科目:高中物理 來源:人教版高三物理磁場專項(xiàng)訓(xùn)練 題型:解答題

(17分)(2009·江蘇高考)1932年,勞倫斯和利文斯頓設(shè)計(jì)出了回旋加速器.回旋加速器的工作原理如圖所示,置于高真空中的D形金屬盒半徑為R,兩盒間的狹縫很小,帶電粒子穿過的時間可以忽略不計(jì),磁感應(yīng)強(qiáng)度為B的勻強(qiáng)磁場與盒面垂直,A處粒子源產(chǎn)生的粒子,質(zhì)量為m,電荷量為+q,在加速器中被加速,加速電壓為U.加速過程中不考慮相對論效應(yīng)和重力作用.

圖17

(1)求粒子第2次和第1次經(jīng)過兩D形盒間狹縫后軌道半徑之比;

(2)求粒子從靜止開始加速到出口處所需的時間t;

(3)實(shí)際使用中,磁感應(yīng)強(qiáng)度和加速電場頻率都有最大值的限制.若某一加速器磁感應(yīng)

強(qiáng)度和加速電場頻率的最大值分別為Bm、fm,試討論粒子能獲得的最大動能Ekm.

 

 

 

查看答案和解析>>

同步練習(xí)冊答案