如圖所示,一根均質(zhì)繩質(zhì)量為M,其兩端固定在天花板上的A、B兩點,在繩的中點懸掛一重物,質(zhì)量為m,懸掛重物的繩PQ質(zhì)量不計.設α、β分別為繩子端點和中點處繩子的切線方向與豎直方向的夾角,則
tanα
tanβ
等于(  )
分析:以整體為研究對象,根據(jù)平衡條件分析端點處對繩子的拉力與總重力的關系式;對左半邊繩子研究,得到端點和中點繩子的拉力的關系式;再采用比例求解.
解答:解:設繩子端點處和中點處繩子張力分別為F1、F2
對整體研究,根據(jù)平衡條件得
    F1cosα=
1
2
(M+m)g
  ①
對左半邊繩子研究得
    F1cosα=F2cosβ+
1
2
Mg
  ②
    F1sinα=F2sinβ         ③
由①②得到  F2cosβ=
1
2
mg
  ④
則由③:①得  tanα=
2F2sinβ
(M+m)g

  由③:④得  tanβ=
2F1sinα
mg

所以由③⑤⑥聯(lián)立得 
tanα
tanβ
=
m
M+m

故選A
點評:本題是力平衡問題,難點存在如何選擇研究對象和如何運用數(shù)學知識變形求解.
練習冊系列答案
相關習題

科目:高中物理 來源: 題型:

精英家教網(wǎng)如圖所示,一根均質(zhì)繩質(zhì)量為M,其兩端固定在天花板上的A、B兩點,在繩的中點懸掛一重物,質(zhì)量為m,懸掛重物的繩PQ質(zhì)量不計.設α、β分別為繩子端點和中點處繩子的切線方向與豎直方向的夾角,則
tanαtanβ
=
 

查看答案和解析>>

科目:高中物理 來源:2010-2011學年山西省高三上學期期中考試物理卷 題型:選擇題

如圖所示,一根均質(zhì)繩質(zhì)量為M,其兩端固定在天花板上的A、B兩點,在繩的中點懸掛一重物,質(zhì)量為m,懸掛重物的繩PQ質(zhì)量不計。設αβ分別為繩子端點和中點處繩子的切線方向與豎直方向的夾角,則等于

A.       B.   

C.           D.

 

查看答案和解析>>

科目:高中物理 來源:不詳 題型:單選題

如圖所示,一根均質(zhì)繩質(zhì)量為M,其兩端固定在天花板上的A、B兩點,在繩的中點懸掛一重物,質(zhì)量為m,懸掛重物的繩PQ質(zhì)量不計.設α、β分別為繩子端點和中點處繩子的切線方向與豎直方向的夾角,則
tanα
tanβ
等于( 。
A.
m
M+m
B.
m+M
5m
C.
m
M
D.
m
2m+M
精英家教網(wǎng)

查看答案和解析>>

科目:高中物理 來源:2008-2009學年上海市七校高三(下)聯(lián)考物理試卷(解析版) 題型:填空題

如圖所示,一根均質(zhì)繩質(zhì)量為M,其兩端固定在天花板上的A、B兩點,在繩的中點懸掛一重物,質(zhì)量為m,懸掛重物的繩PQ質(zhì)量不計.設α、β分別為繩子端點和中點處繩子的切線方向與豎直方向的夾角,則=   

查看答案和解析>>

同步練習冊答案