12.如圖所示,長為L、板間距為d的平行板電容器水平放置,兩板與電池相連接,起初,電鍵S呈閉合狀態(tài),一個質(zhì)量為m,帶電量為+q的微粒(不計(jì)重力)以水平速度v0從極板間正中央位置沿極板射入,且恰好到達(dá)下板板中點(diǎn),不計(jì)一切阻力及電容器的邊緣效應(yīng).
(1)求電容器極板間電壓U;
(2)若將電鍵斷開,微粒入射位置、入射速度不變,為使微粒恰好打在下極板右邊緣,則應(yīng)將下極板下調(diào)多大距離(上極板不動)?
(3)若電鍵保持閉合狀態(tài),微粒入射位置、入射速度不變,為使微粒恰好打在下極板右邊緣,則應(yīng)將下極板下調(diào)多大距離(上極板不動)?

分析 (1)帶電為零只受電場力,初速度與電場力垂直,做類似平拋運(yùn)動,根據(jù)分位移公式和牛頓第二定律列式求解;
(2)將電鍵斷開,根據(jù)$C=\frac{Q}{U}$、$C=\frac{εs}{4kπd}$、U=Ed得到電場強(qiáng)度變化情況,確定加速度情況,再根據(jù)分位移公式列式分析;
(3)若電鍵保持閉合狀態(tài),電壓不變,根據(jù)U=Ed列式得到電場強(qiáng)度,再根據(jù)分位移公式列式后聯(lián)立求解即可.

解答 解:(1)微粒做類似平拋運(yùn)動,根據(jù)分位移公式,有:
豎直分位移:$\frackiikkke{2}=\frac{1}{2}a{t_1}^2$,
 水平分位移:${v_0}{t_1}=\frac{L}{2}$,
根據(jù)牛頓第二定律,有:
 $ma=Eq=\frac{U}i0cossiq$,
聯(lián)立解得:
 $U=\frac{{4m{d^2}v_0^2}}{{q{L^2}}}$;
(2)斷開S時(shí),Q保持不變,由$C=\frac{Q}{U}=\frac{εs}{4kπd}$和$E=\frac{U}qmqy0w0$得到:E=$\frac{4πkQ}{{ε}_{r}S}$,說明電場強(qiáng)度不變,故帶電粒子的加速度保持不變.
設(shè)下調(diào)距離為d2,則:
${d_2}+\fracqiw2emg{2}=\frac{1}{2}at_2^2$,
v0t2=L,
聯(lián)立解得:${d_2}=\frac{3}{2}d$;
(3)電鍵閉合時(shí),U保持不變,設(shè)下調(diào)距離為d3,則:${E_3}=\frac{U}{{d+{d_3}}}$,
又根據(jù)牛頓第二定律,有:ma3=E3q,
根據(jù)分位移公式,有:
${d_3}+\frac0a0gowi{2}=\frac{1}{2}{a_3}t_3^2$,
v0t3=L; 
聯(lián)立解得:
${d_3}=\frac{{\sqrt{33}-3}}{4}d$;
答:(1)電容器極板間電壓U為$\frac{4mqqmwcua^{2}{v}_{0}^{2}}{q{L}^{2}}$;
(2)若將電鍵斷開,微粒入射位置、入射速度不變,為使微粒恰好打在下極板右邊緣,則應(yīng)將下極板下調(diào)$\frac{3}{2}d$的距離;
(3)若電鍵保持閉合狀態(tài),微粒入射位置、入射速度不變,為使微粒恰好打在下極板右邊緣,則應(yīng)將下極板下調(diào)$\frac{\sqrt{33}-3}{4}d$的距離.

點(diǎn)評 本題關(guān)鍵是明確粒子的受力情況和運(yùn)動性質(zhì),然后根據(jù)電容器的電容公式、類平拋運(yùn)動的分位移公式列式后聯(lián)立求解,不難.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:計(jì)算題

3.如圖所示,堅(jiān)直平面內(nèi)的$\frac{3}{4}$圓弧形光滑軌道半徑為R=1.6m,A端與圓心0等高,B端 在O的正上方,與A右側(cè)相連的是高和寬都為L=0.3m的臺階,臺階有若干級,一個質(zhì)量為 m=0.3kg的小球從A點(diǎn)正上方h處,由靜止釋放,自由下落至A點(diǎn)后進(jìn)入圓形軌道,不計(jì)小球進(jìn)入軌道時(shí)的能量損失,不計(jì)空氣阻力,小球恰能到達(dá)軌道的最高點(diǎn)B,求:
(1)釋放點(diǎn)距A點(diǎn)的豎直高度;
(2)若釋放點(diǎn)距A點(diǎn)的豎直高度H=3R,則小球在B點(diǎn)時(shí)對軌道的壓力是多大?小球會落在第幾級臺階上?設(shè)g=10m/s2

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

3.兩塊大小、形狀完全相同的金屬板正對水平放置,構(gòu)成一個平行板電容器,將兩金屬板分別與電源兩極相連接,如圖所示.閉合開關(guān)S達(dá)到穩(wěn)定后,在兩板間有一帶電液滴p恰好處于靜止?fàn)顟B(tài).下列判斷正確的是( 。
A.保持開關(guān)S閉合,減小兩板間的距離,液滴仍處于靜止?fàn)顟B(tài)
B.保持開關(guān)S閉合,減小兩板間的距離,液滴向下運(yùn)動
C.斷開開關(guān)S,減小兩板間的距離,液滴仍處于靜止?fàn)顟B(tài)
D.斷開開關(guān)S,減小兩板間的距離,液滴向下運(yùn)動

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

20.汽車以20m/s的速度在平直公路上行駛,急剎車時(shí)的加速度大小為5m/s2,則自駕駛員急剎車開始2s與7s時(shí)汽車的位移之比為(  )
A.5:4B.4:5C.4:3D.3:4

查看答案和解析>>

科目:高中物理 來源: 題型:計(jì)算題

7.如圖所示,在空間中存在垂直紙面向里的場強(qiáng)為B勻強(qiáng)磁場,其邊界AB、CD的寬度為d,在左邊界的Q點(diǎn)處有一質(zhì)量為m,帶電量為-q的粒子沿與左邊界成30°的方向射入磁場,粒子重力不計(jì).求:

(1)若帶電粒子能垂直CD邊界飛出磁場,粒子的速度多大;
(2)帶電粒子能從AB邊界飛出的最大速度;
(3)若帶電粒子的速度是$\frac{2qdB}{m}$,并可以從Q點(diǎn)沿紙面各個方向射入磁場,則粒子能打到CD邊界的范圍.

查看答案和解析>>

科目:高中物理 來源: 題型:填空題

17.勻變速直線運(yùn)動中的平均速度的計(jì)算公式:$\overline{v}=\frac{v+{v}_{0}}{t}$.

查看答案和解析>>

科目:高中物理 來源: 題型:填空題

4.如圖所示,質(zhì)量為M的重物用繩子懸于電梯中,其中OB繩子水平,當(dāng)電梯以加速度α豎直向上做勻速運(yùn)動時(shí),OA繩子的張力為$\frac{M(g+a)}{cosθ}$,OB繩子的張力為M(g+a)tanθ.

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

1.放在水平地面上的一物塊,受到方向不變的水平推力F的作用,F(xiàn)的大小與時(shí)間t的關(guān)系和物塊速度v與時(shí)間t的關(guān)系如圖所示.取重力加速度g=10m/s2.由此兩圖線可以求得物塊的質(zhì)量m和物塊與地面之間的動摩檫因數(shù)μ分別為( 。
A.m=1.5kg,μ=0.4B.m=0.5kg,μ=0.4C.m=1.5kg,μ=0.2D.m=0.5kg,μ=0.2

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

2.如圖所示,兩重物A和B通過一根跨過光滑定滑輪的輕繩相連,處于靜止?fàn)顟B(tài)(0°<θ<45°),下列說法中是正確的是( 。
A.物體B對地面一定有壓力
B.可能出現(xiàn)B對地面壓力為零的情況
C.將B稍向右移動后仍靜止,輕繩的拉力減小
D.將B稍向右移動后仍靜止,地面對B的摩擦力增大

查看答案和解析>>

同步練習(xí)冊答案