(2010?浙江模擬)有一xOy平面,在x<0的空間內(nèi),存在場(chǎng)強(qiáng)為E、與 y軸成θ角的勻強(qiáng)電場(chǎng),如圖所示.在第Ⅲ象限某處有質(zhì)子源s,以某一初速度垂直于電場(chǎng)的方向射出質(zhì)量為m、電荷量為q的質(zhì)子.初速度的延長(zhǎng)線與x軸的交點(diǎn)P的坐標(biāo)為(-d,0),質(zhì)子射出電場(chǎng)時(shí)恰經(jīng)過(guò)坐標(biāo)原點(diǎn)O,并沿x軸正向進(jìn)入x>0區(qū)域.在x>0一側(cè)有邊界為圓形的勻強(qiáng)磁場(chǎng),磁感應(yīng)強(qiáng)度為B,方向垂直于xOy平面向外,邊界某處與y軸相切.質(zhì)子進(jìn)入磁場(chǎng)被偏轉(zhuǎn),在射出磁場(chǎng)后垂直于電場(chǎng)方向回到x<0的區(qū)域.
(1)試求出質(zhì)子的初速度v0,并確定質(zhì)子源s位置的坐標(biāo).
(2)圓形磁場(chǎng)的最小半徑r.
(3)質(zhì)子從射入磁場(chǎng)到再次回到x<0的電場(chǎng)區(qū)域所經(jīng)歷的時(shí)間t.
分析:(1)粒子垂直射入電場(chǎng),在電場(chǎng)中偏轉(zhuǎn)做類(lèi)平拋運(yùn)動(dòng),畫(huà)出粒子的運(yùn)動(dòng)軌跡,根據(jù)平拋運(yùn)動(dòng)的相關(guān)規(guī)律即可求解初速度,根據(jù)幾何關(guān)系可求得質(zhì)子源s位置的坐標(biāo);
(2)設(shè)質(zhì)子在磁場(chǎng)中運(yùn)動(dòng)軌跡的半徑為R,畫(huà)出粒子的運(yùn)動(dòng)軌跡如圖所示,則根據(jù)幾何關(guān)系及向心力公式求得半徑r;
(3)先根據(jù)周期公式求出在磁場(chǎng)中運(yùn)動(dòng)的時(shí)間,粒子從磁場(chǎng)中出來(lái)到射進(jìn)電場(chǎng)的過(guò)程中做勻速直線運(yùn)動(dòng),結(jié)合幾何關(guān)系即可求解此過(guò)程的時(shí)間,總時(shí)間等于兩段時(shí)間之和.
解答:解:(1)設(shè)質(zhì)子在電場(chǎng)中的運(yùn)動(dòng)時(shí)間為t1,粒子垂直射入電場(chǎng),在電場(chǎng)中偏轉(zhuǎn)做類(lèi)平拋運(yùn)動(dòng),畫(huà)出粒子的運(yùn)動(dòng)軌跡,根據(jù)平拋運(yùn)動(dòng)的推論可知,速度方向的反向延長(zhǎng)線通過(guò)水平位移的中點(diǎn),則
dcosθ=
1
2
v0t1
tanθ=
qE
m
t
1
v0

解得:v0=
2qEd(cosθ)2
msinθ

根據(jù)幾何關(guān)系得:
xs=-d[1+(cosθ)2]
ys=-dsinθcosθ
質(zhì)子源s位置的坐標(biāo)為(-d[1+(cosθ)2],-dsinθcosθ).
(2)設(shè)質(zhì)子在磁場(chǎng)中運(yùn)動(dòng)軌跡的半徑為R,畫(huà)出粒子的運(yùn)動(dòng)軌跡如圖所示,
則根據(jù)幾何關(guān)系有:
r=Rcos
θ
2

Bqv=
mv2
R
,
v=
v0
cosθ
=
2qEd
msinθ

解得:
r=
1
B
2Edm
qsinθ
cos
θ
2

(3)設(shè)在磁場(chǎng)中運(yùn)動(dòng)的時(shí)間為t2,從出磁場(chǎng)到y(tǒng)軸的時(shí)間為t3,則
t=t2+t3
其中t2=
π-θ
T=
(π-θ)m
Bq
    
 t3=
r+rsin
θ
2
vcosθ
=
m(1+sin
θ
2
)
qBcosθ
cos
θ
2

所以t=t2+t3=
m
qB
[π-θ+
(1+sin
θ
2
)cos
θ
2
cosθ
]

答:(1)質(zhì)子的初速度v0
2qEd(cosθ)2
msinθ
,質(zhì)子源s位置的坐標(biāo)為(-d[1+(cosθ)2],-dsinθcosθ).
(2)圓形磁場(chǎng)的最小半徑r為
1
B
2Edm
qsinθ
cos
θ
2

(3)質(zhì)子從射入磁場(chǎng)到再次回到x<0的電場(chǎng)區(qū)域所經(jīng)歷的時(shí)間t為
m
qB
[π-θ+
(1+sin
θ
2
)cos
θ
2
cosθ
]
點(diǎn)評(píng):本題是帶電粒子在組合場(chǎng)中運(yùn)動(dòng)的問(wèn)題,粒子垂直射入電場(chǎng),在電場(chǎng)中偏轉(zhuǎn)做類(lèi)平拋運(yùn)動(dòng),在磁場(chǎng)中做勻速圓周運(yùn)動(dòng),要求同學(xué)們能畫(huà)出粒子運(yùn)動(dòng)的軌跡,結(jié)合幾何關(guān)系求解,知道半徑公式及周期公式,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中物理 來(lái)源: 題型:

(2010?浙江模擬)據(jù)新華網(wǎng)報(bào)道,嫦娥一號(hào)在接近月球時(shí),要利用自身的火箭發(fā)動(dòng)機(jī)點(diǎn)火減速,以被月球引力俘獲進(jìn)入繞月軌道.這次減速只有一次機(jī)會(huì),如果不能減速到一定程度,嫦娥一號(hào)將一去不回頭離開(kāi)月球和地球,漫游在更加遙遠(yuǎn)的深空;如果過(guò)分減速,嫦娥一號(hào)則可能直接撞擊月球表面.該報(bào)道地圖示如圖.則下列說(shuō)法正確的是( 。

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:

(2010?浙江模擬)在“探究彈性勢(shì)能的表達(dá)式”的活動(dòng)中,為計(jì)算彈簧彈力所做功,把拉伸彈簧的過(guò)程分為很多小段,拉力在每小段可以認(rèn)為是恒力,用各小段做功的代數(shù)和代表彈力在整個(gè)過(guò)程所做的功,物理學(xué)中把這種研究方法叫做“微元法”.下面幾個(gè)實(shí)例中沒(méi)有應(yīng)用到這一思想方法的是( 。

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:

(2010?浙江模擬)從地面豎直上拋一物體,上拋初速度v0=20m/s,物體上升的最大高度H=16m,設(shè)物體在整個(gè)運(yùn)動(dòng)過(guò)程中所受的空氣阻力大小不變,以地面為重力勢(shì)能零點(diǎn),g取10m/s2,問(wèn)物體在整個(gè)運(yùn)動(dòng)過(guò)程中離地面多高處其動(dòng)能與重力勢(shì)能相等?(保留2位有效數(shù)字)
某同學(xué)的解答如下:
設(shè)物體上升至h高處動(dòng)能與重力勢(shì)能相等
1
2
mv2=mgh  ①
上升至h處由動(dòng)能定理-mgh-Ffh=
1
2
mv2-
1
2
mv02
上升至最高點(diǎn)H處由動(dòng)能定理-mgh-Ffh=0-
1
2
mv02
聯(lián)立以上三式,并代入數(shù)據(jù)解得h=8.9m處動(dòng)能與重力勢(shì)能相等.
經(jīng)檢查,計(jì)算無(wú)誤.該同學(xué)所得結(jié)論是否有不完善之處?若有請(qǐng)予以補(bǔ)充.

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:

(2010?浙江模擬)如圖所示,在空間中取直角坐標(biāo)系Oxy,在第一象限內(nèi)平行于y軸的虛線MN與y軸距離為d,從y軸到MN之間的區(qū)域充滿一個(gè)沿y軸正方向的勻強(qiáng)電場(chǎng),場(chǎng)強(qiáng)大小為E.初速度可以忽略的電子經(jīng)過(guò)另一個(gè)電勢(shì)差為U的電場(chǎng)加速后,從y軸上的A點(diǎn)以平行于x軸的方向射入第一象限區(qū)域,A點(diǎn)坐標(biāo)為(0,h).已知電子的電量為e,質(zhì)量為m,加速電場(chǎng)的電勢(shì)差U>
Ed24U
,電子的重力忽略不計(jì),求:
(1)電子從A點(diǎn)進(jìn)入電場(chǎng)到離開(kāi)該電場(chǎng)區(qū)域所經(jīng)歷的時(shí)間t和離開(kāi)電場(chǎng)區(qū)域時(shí)的速度v; 
(2)電子經(jīng)過(guò)x軸時(shí)離坐標(biāo)原點(diǎn)O的距離L.

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:

(2010?浙江模擬)質(zhì)量為m的小球由輕繩a和b分別系于一輕質(zhì)木架上的A點(diǎn)和C點(diǎn),如圖所示,當(dāng)輕桿繞軸BC以角速度ω勻速轉(zhuǎn)動(dòng)時(shí),小球在水平面內(nèi)做勻速圓周運(yùn)動(dòng),繩a在豎直方向,繩b在水平方向,當(dāng)小球運(yùn)動(dòng)到圖示位置時(shí),繩b被燒斷的同時(shí)桿子停止轉(zhuǎn)動(dòng),則( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案