3.在x軸下方有一個(gè)場(chǎng)強(qiáng)為E0的有理想邊界的勻強(qiáng)電場(chǎng)區(qū)域,場(chǎng)強(qiáng)方向沿+x方向,該區(qū)域是邊長(zhǎng)為2L的正方形,邊界和頂點(diǎn)的坐標(biāo)如圖甲所示,某種帶正電的粒子從坐標(biāo)為(0,-2L)的P點(diǎn)以速度v0沿+y方向射入電場(chǎng),粒子恰好從電場(chǎng)右邊界的中點(diǎn)A射出電場(chǎng),整個(gè)環(huán)境為真空中且粒子重力忽略不計(jì).
(1)求該帶電粒子的比荷$\frac{q}{m}$;
(2)將原勻強(qiáng)電場(chǎng)區(qū)域改為如圖乙所示的交變電場(chǎng),交變電場(chǎng)變化的周期為T=$\frac{L}{2{v}_{0}}$,從t=0開始,每個(gè)周期T內(nèi),前$\frac{T}{5}$內(nèi)場(chǎng)強(qiáng)為+4E1,后$\frac{4T}{5}$內(nèi)場(chǎng)強(qiáng)為-E1(場(chǎng)強(qiáng)沿+x方向?yàn)檎罅康纳鲜隽W尤匀灰运俣葀0從P點(diǎn)沿+y方向持續(xù)射和有界電場(chǎng),最終所有粒子恰好全部能從有界電場(chǎng)的上邊界離開電場(chǎng)(即向上穿過x軸),求圖乙中E1的值;(忽略粒子間的相互作用力)
(3)在圖甲的x軸上方某區(qū)域內(nèi)存在一個(gè)圓形的勻強(qiáng)磁場(chǎng)區(qū)域,磁場(chǎng)方向垂直于xOy坐標(biāo)平面,要使在(2)問情境下所有從電場(chǎng)上邊界離開電場(chǎng)的粒子經(jīng)過該磁場(chǎng)集團(tuán)后都能會(huì)聚于坐標(biāo)為(2L,3L)的C點(diǎn),求符合要求的圓形區(qū)域的最小半徑r和與之對(duì)應(yīng)的磁感應(yīng)強(qiáng)度B的大小.

分析 (1)粒子在電場(chǎng)中沿+y方向做勻速直線運(yùn)動(dòng),在沿+x方向做初速度為零的勻加速運(yùn)動(dòng),根據(jù)運(yùn)動(dòng)學(xué)規(guī)律分別列式聯(lián)立求解可得粒子的比荷;
(2)根據(jù)電場(chǎng)變化分段利用牛頓第二定律求得加速度,因?yàn)樗辛W忧『媚軓挠薪珉妶?chǎng)的上邊界離開電場(chǎng),可以確定在t=nT或t=nT+$\frac{1}{5}$T 時(shí)刻進(jìn)入電場(chǎng)的粒子恰好分別從電場(chǎng)區(qū)域的右上角、左上角離開電場(chǎng),根據(jù)勻變速運(yùn)動(dòng)位移公式求得電場(chǎng)強(qiáng)度;
(3)洛倫茲力提供向心力,由qv0B=m$\frac{{v}_{0}^{2}}{r}$解得半徑,作圖,符合“都能會(huì)聚在C點(diǎn)”條件的磁場(chǎng)區(qū)域的最小圓和最大圓分別如圖的O1和O2,只要讓C點(diǎn)在圓形磁場(chǎng)區(qū)域的水平直徑的右端點(diǎn)上,半徑介于O1和O2的半徑之間,都能達(dá)到“都能會(huì)聚在C點(diǎn)”的目的,從x=-L離開電場(chǎng)的粒子若能進(jìn)入圓形磁場(chǎng)區(qū),就能保證所有粒子能進(jìn)入磁場(chǎng)區(qū),如圖乙中圓O1是符合條件的最小圓,結(jié)合幾何關(guān)系求得符合要求的圓形區(qū)域的最小半徑r和與之對(duì)應(yīng)的磁感應(yīng)強(qiáng)度B的大小.

解答 解:(1)設(shè)粒子經(jīng)過時(shí)間t0打在A點(diǎn),沿+y方向有:L=v0t0
沿+x方向有:L=$\frac{1}{2}$×$\frac{{E}_{0}q}{m}$×t02
聯(lián)立解得:$\frac{q}{m}$=$\frac{2{v}_{0}^{2}}{{E}_{0}L}$
(2)粒子通過電場(chǎng)區(qū)的時(shí)間:t=$\frac{2L}{v0}$=4T (已知T=$\frac{L}{2{v}_{0}}$)
分析:從t=0時(shí)刻開始,粒子在電場(chǎng)中運(yùn)動(dòng)時(shí),每個(gè)場(chǎng)強(qiáng)變化周期的前1/5時(shí)間內(nèi)的加速度大小a1=$\frac{4{E}_{1}q}{m}$,沿+x方向;在每個(gè)場(chǎng)強(qiáng)變化周期的后4/5時(shí)間內(nèi)加速度大小a2=$\frac{{E}_{1}q}{m}$,沿-x方向.
不同時(shí)刻從P點(diǎn)進(jìn)入電場(chǎng)的粒子在電場(chǎng)方向的速度vx隨時(shí)間t變化的關(guān)系如圖1所示.

因?yàn)樗辛W忧『媚軓挠薪珉妶?chǎng)的上邊界離開電場(chǎng),可以確定在t=nT或t=nT+$\frac{1}{5}$T 時(shí)刻進(jìn)入電場(chǎng)的粒子恰好分別從電場(chǎng)區(qū)域的右上角、左上角離開電場(chǎng).它們?cè)陔妶?chǎng)方向偏移的距離最大為L(zhǎng),有:
當(dāng)場(chǎng)強(qiáng)為4E1時(shí)加速度為:a1=$\frac{4{E}_{1}q}{m}$
當(dāng)場(chǎng)強(qiáng)為E1時(shí)加速度為:a2=$\frac{{E}_{1}q}{m}$
L=($\frac{1}{2}$T•$\frac{{a}_{1}T}{5}$)×4
解得  E1=$\frac{5}{4}$E0 
(3)由圖1可知,所有粒子射出電場(chǎng)時(shí),x方向分速度為零,速度方向都平行于y軸,大小都是v0.設(shè)粒子在磁場(chǎng)中的運(yùn)動(dòng)半徑為r,則
由qv0B=m$\frac{{v}_{0}^{2}}{r}$得 r=$\frac{m{v}_{0}}{qB}$  
粒子平行進(jìn)入圓形磁場(chǎng)區(qū)域內(nèi)要能會(huì)聚于C點(diǎn),則磁場(chǎng)區(qū)半徑R與軌道半徑必須相等,且C點(diǎn)必須處在圓形磁場(chǎng)區(qū)域的水平直徑的右端點(diǎn)上,即:R=r  

分析:如圖所示,符合“都能會(huì)聚在C點(diǎn)”條件的磁場(chǎng)區(qū)域的最小圓和最大圓分別如圖的O1和O2,只要讓C點(diǎn)在圓形磁場(chǎng)區(qū)域的水平直徑的右端點(diǎn)上,半徑介于O1和O2的半徑之間,都能達(dá)到“都能會(huì)聚在C點(diǎn)”的目的.
從x=-L離開電場(chǎng)的粒子若能進(jìn)入圓形磁場(chǎng)區(qū),就能保證所有粒子能進(jìn)入磁場(chǎng)區(qū),如圖乙中圓O1是符合條件的最小圓,則
圓形磁場(chǎng)區(qū)的最小半徑為:Rmin=$\frac{3}{2}$L 
對(duì)應(yīng)磁感應(yīng)強(qiáng)度有最大值為:B=Bmax=$\frac{2m{v}_{0}}{3qL}$=$\frac{{E}_{0}}{3{v}_{0}}$.
答:(1)該帶電粒子的比荷為$\frac{2{v}_{0}^{2}}{{E}_{0}L}$;
(2)乙中E1的值為$\frac{5}{4}$E0;
(3)符合要求的圓形區(qū)域的最小半徑r和與之對(duì)應(yīng)的磁感應(yīng)強(qiáng)度B的大小為$\frac{{E}_{0}}{3{v}_{0}}$.

點(diǎn)評(píng) 本題考查帶電粒子在電場(chǎng)中和磁場(chǎng)中的運(yùn)動(dòng),理清粒子的運(yùn)動(dòng)規(guī)律是解決本題的關(guān)鍵,處理粒子在磁場(chǎng)中運(yùn)動(dòng)問題,要會(huì)確定粒子做圓周運(yùn)動(dòng)的圓心、半徑和圓心角,知道運(yùn)動(dòng)時(shí)間和周期和圓心角之間的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:計(jì)算題

8.長(zhǎng)為0.5m的輕桿OA繞O點(diǎn)在豎直平面內(nèi)做圓周運(yùn)動(dòng).A端連著一個(gè)質(zhì)量為m=2kg的小球.當(dāng)小球位于最高點(diǎn)時(shí),小球?qū)U的壓力是4.0N.求
(1)小球在最高點(diǎn)的速率
(2)轉(zhuǎn)到最低點(diǎn)時(shí),小球的速率是6m/s,求桿對(duì)小球的拉力的大小.g取10m/s2

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

9.下列說法正確的是( 。
A.分子間距離增大時(shí),分子力一定做負(fù)功
B.擴(kuò)散運(yùn)動(dòng)表明組成物質(zhì)的分子是運(yùn)動(dòng)的
C.食鹽晶體中的鈉、氯離子按一定規(guī)律分布,具有空間上的周期性
D.第二類永動(dòng)機(jī)不違背能量守恒定律,科技發(fā)展到一定程度就能制成

查看答案和解析>>

科目:高中物理 來源: 題型:實(shí)驗(yàn)題

11.如圖甲所示,楔形木塊A固定在水平放置的壓力傳感器上,A的斜面是光滑的.某同學(xué)將質(zhì)量不同的小鋼球從斜面頂端靜止釋放,記錄小鋼球在斜面上運(yùn)動(dòng)時(shí)壓力傳感器的示數(shù)F.記錄實(shí)驗(yàn)數(shù)據(jù)后,根據(jù)數(shù)據(jù)作出F-m圖象如圖乙.已知當(dāng)?shù)刂亓铀俣葹間,求
(1)不同質(zhì)量的小鋼球在斜面上運(yùn)動(dòng)的時(shí)間相同(填“相同”或“不相同”)
(2)由圖象的縱坐標(biāo)截距可求出木塊A的質(zhì)量M;
(3)若斜面傾角為θ,由圖象的斜率k可求出cos2θ=$\frac{k}{g}$(用題中的相關(guān)符號(hào)表示)

查看答案和解析>>

科目:高中物理 來源: 題型:計(jì)算題

18.如圖,一輕繩將質(zhì)量為m1的小球掛在木箱內(nèi),木箱的質(zhì)量為m2.一恒力F豎直向上作用在木箱上,使木箱向上做勻加速直線運(yùn)動(dòng),小球距離木箱底板的距離為s.不計(jì)空氣阻力,重力加速度為g.
(1)求木箱上升時(shí)輕繩對(duì)小球的拉力大;
(2)某時(shí)刻開始輕繩突然斷了,求經(jīng)過多長(zhǎng)時(shí)間,小球與木箱底板相碰.

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

8.如圖所示,第一象限內(nèi)存在垂直紙面向里的勻強(qiáng)磁場(chǎng),電荷量相等的a、b兩粒子,分別從A、O兩點(diǎn)沿x軸正方向同時(shí)射入磁場(chǎng),兩粒子同時(shí)到達(dá)C點(diǎn),此時(shí)a粒子速度恰好沿y軸負(fù)方向,粒子間作用力、重力忽略不計(jì),則a、b粒子( 。
A.分別帶正、負(fù)電B.運(yùn)動(dòng)周期之比為2:3
C.半徑之比為$\sqrt{3}$:2D.質(zhì)量之比為2:$\sqrt{3}$

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

15.鉗形電流表的外形和結(jié)構(gòu)如圖甲所示.圖甲中電流表的讀數(shù)為0.9A,圖乙中用同一電纜線繞了3匝,則(  )
A.這種電流表能測(cè)出交變電流的有效值
B.這種電流表既能測(cè)直流電流,又能測(cè)交變電流
C.這種電流表能測(cè)交變電流,圖乙的讀數(shù)為0.3A
D.這種電流表能測(cè)交變電流,圖乙的讀數(shù)為2.7 A

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

12.下列說法正確的是( 。
A.電子的衍射圖樣表明電子具有波動(dòng)性
B.β射線在云室中穿過會(huì)留下淸晰的徑跡
C.電子束通過雙縫實(shí)驗(yàn)裝置后可以形成干涉圖樣
D.結(jié)合能越大,原子核中核子結(jié)合得越牢固,原子核越穩(wěn)定
E.光電效應(yīng)實(shí)驗(yàn)中,光電子的最大初動(dòng)能與入射光的頻率無關(guān),與入射光的強(qiáng)度有關(guān)

查看答案和解析>>

科目:高中物理 來源: 題型:填空題

13.地球表面有一質(zhì)量為m的物體A,其所在處的緯度為θ,若地球質(zhì)量M,半徑為R,地球自轉(zhuǎn)的角速度為ω,則物體受到地球的萬有引力為$G\frac{Mm}{{R}_{\;}^{2}}$,物體隨地球自轉(zhuǎn)所需要的向心力為$m{ω}_{\;}^{2}Rcosθ$;若物體位于赤道處,則物體隨地球自轉(zhuǎn)所需要的向心力為$m{ω}_{\;}^{2}R$,物體所受的支持力為$G\frac{Mm}{{R}_{\;}^{2}}-m{ω}_{\;}^{2}R$.(萬有引力恒量為G)

查看答案和解析>>

同步練習(xí)冊(cè)答案