河北省邯鄲市2009屆高三第二次模擬考試
數(shù)學(理工類)
本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分 第Ⅰ卷1至2頁 第Ⅱ卷3至4頁 考試結束后,將本試卷和答題卡一并交回
第Ⅰ卷(選擇題60分)
注意事項:
1 答題前,考生在答題卡上務必用直徑0 5毫米黑色墨水簽字筆將自己的姓名、準考證號填寫清楚,并貼好條形碼 請認真核準條形碼上的準考證號、姓名和科目
2 每小題選出答案后,用2B鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其他答案標號,在試題卷上作答無效
3 本卷共12小題,每小題5分,共60分 在每小題給出的四個選項中,只有一項是符合題目要求的
參考公式:www.ks5u.com
如果事件互斥,那么 球的表面積公式
如果事件相互獨立,那么 其中表示球的半徑
球的體積公式
如果事件在一次試驗中發(fā)生的概率是,那么
次獨立重復試驗中事件恰好發(fā)生次的概率 其中表示球的半徑
一、 選擇題(本大題共12個小題.每小題5分;共60分.在每小題給出的四個選項中,只有一項是符合題目要求的)
1.集合,則是
A. B. C. D.
2.與的值最接近的是
A. B. C.- D.-
3. 為虛數(shù)單位,且,則的值為
A.4 B. C. D.
4.下列函數(shù)中,以為周期的奇函數(shù)是
A. B.
C. D.
5.已知公差不為的正項等差數(shù)列中,為其前項和,若,,也成等差數(shù)列,,則等于
A. B. C. D.
6.按ABO血型系統(tǒng)學說,每個人的血型為A,B,O,AB型四種之一,依血型遺傳學,當且僅當父母中至少有一人的血型是AB型時,子女的血型一定不是O型,若某人的血型是O型,則其父母血型的所有可能情況有
A.12種 B.10種 C.9種 D.6種
7 . 把正方形ABCD沿對角線AC折起,當以A、B、C、D四點為頂點的三棱錐體積最大時,直線BD和平面ABC所成的角的大小為
A. 30° B. 45° C.60° D.90°
8. 隨機變量服從正態(tài)分布N(0,1),記.給出下列結論:①; ②;③;④.其中正確命題的個數(shù)為
A.1
B
9.點P為△ABC的外心,且等于
A.6 B.
10 若直線和圓沒有交點,則過點的直線與橢圓的交點個數(shù)為
A.至多一個 B.2個 。茫眰 。模皞
11. (+1)4(x-1)5展開式中x4的系數(shù)為
A.55
B.
12.從雙曲線的左焦點F引圓的切線,切點為,延長交雙曲線右支于點,若為線段的中點,為坐標原點,則
A. B. C. D.
第Ⅱ卷(非選擇題90分)
二、填空題(本大題共4小題,每小題5分,共20分)
13. 與直線平行且與拋物線相切的直線方程是 ;
14. 田忌和齊王賽馬是歷史上有名的故事,設齊王的三匹馬分別為A1、A2、A3;田忌的三匹馬分別為B1、B2、B3;每場比賽雙方各派一匹馬上場,每匹馬只出場一次,共賽三場,贏兩場者獲勝,雙方均不知對方的馬出場順序.若這六匹馬的優(yōu)、劣程度可以用不等式A1>B1>A2>B2>A3>B3表示,則田忌獲勝的概率是 ;
15.已知,則 ;
16. 如圖,是函數(shù)
圖象上任意兩點,設點C分的比為,
則由圖中點C在點C′上方,可得不等式
請分析上述過程,結合函數(shù)的圖象,可得一個類似
不等式為 .
三、解答題(本大題共6小題,共70分 解答應寫出文字說明,證明過程或演算步驟)
17. (本小題滿分10分)
在銳角△ABC中,A,B,C的對邊分別為
(Ⅰ)求的值;
(Ⅱ)若,,求的值.
18、(本小題滿分12分)
甲、乙兩人進行圍棋比賽,約定每局勝者得1分,負者得分(沒有和棋),比賽進行到有一人比對方多分或打滿局時,比賽結束.設甲在每局中獲勝的概率為,且各局勝負相互獨立.已知第二局打完時比賽結束的概率為.
(Ⅰ) 求的值;
(Ⅱ) 設表示比賽結束時已比賽的局數(shù),求隨機變量的分布列和數(shù)學期望.
19. (本小題滿分12分)
如圖,已知斜三棱柱的底面是直角三角形,,側棱與底面所成的角為,點在底面上的射影落在上.
(Ⅰ)求證:面;
(Ⅱ)若,且當時,
求二面角的大小;
(Ⅲ)當為何值時,,且使點恰為中點.
20.(本小題滿分12分)
已知函數(shù),設.
(Ⅰ)求F(x)的單調區(qū)間;
(Ⅱ)是否存在實數(shù),使得函數(shù)的圖像與的圖像恰好有四個不同的交點?若存在,求出的取值范圍,若不存在,說明理由.
21、(本小題滿分12分)
已知定點A(-2,0),動點B是圓(F為圓心)上一點,動點P滿足,.
(Ⅰ)求動點P的軌跡方程;
(Ⅱ)是否存在過點E(0,-4)的直線l交P點的軌跡于點R,T,且滿足 (O為原點),若存在,求直線l的方程,若不存在,請說明理由.
22.(本小題滿分12分)
已知數(shù)列滿足,,若數(shù)列滿足,
(Ⅰ)求數(shù)列通項公式; (Ⅱ)證明:;
(Ⅲ)求證:.
一、選擇題 D C C C A C B CAB D B
二、填空題 13. 14. 15. -8 16.
三、解答題
17.(10分) 解:(Ⅰ)由已知得
由余弦定理得,即…………………………3分
因為銳角△ABC中,A+B+C=p,,所以,則
………………………6分
(Ⅱ),則.將,代入余弦定理:得解得.…10分
18.(12分) 解:(Ⅰ)依題意,當甲連勝局或乙連勝局時,第二局賽完時比賽結束.
有. 解得或. , .…5分
(Ⅱ)依題意知,的所有可能值為2,4,6.
設每兩局比賽為一輪,則該輪賽完時比賽結束的概率為.
若該輪賽完時比賽還將繼續(xù),則甲、乙在該輪中必是各得1分,此時,該輪比賽結果對下輪比賽是否停止沒有影響.
從而有, , .
隨機變量的分布列為:
2
4
6
…………………………………………………………………………………………10分
………………………………………………12分
19.(12分)解:(Ⅰ),面,
,又,
面. …………………………………………………………4分
(Ⅱ)過作垂足為,則.
過作,垂足為,由三垂線定理得;
是所求二面角的平面角.……………………6分
設,,
在中,由,
得,所以.
在中,,,
故所求二面角的度數(shù)為.…………………………………………8分
(Ⅲ)面,要使,由三垂線定理可知,只需,
為菱形,此時
又,要使為中點,只需,
即為正三角形,.
,且點D落在BC上,即為側棱與底面所成的角.
故當時, 且使點D為BC的中點.………………12分
20.(12分)
解:(Ⅰ)
…………………………………………………………………………………………2分
由.
……5分
(Ⅱ)若的圖像與的圖像恰有四個不同交點,
即有四個不同的根,亦即方程有四個不同的根.…………………7分
令,
則.…………………8分
當變化時的變化情況如下表:
-1
(-1,0)
0
(0,1)
1
(1,)
的符號
+
0
-
0
+
0
-
的單調性
ㄊ
極大值
ㄋ
極小值
ㄊ
極大值
ㄋ
由表格知:.……10分
可知,當時,
…………………12分
21.(12分)解:(Ⅰ)由題意:點P是AB的垂直平分線與BF的交點,
且
∴P點軌跡為以A、F為焦點的橢圓.………………………………3分
設方程為
……………………………………………6分
(Ⅱ)假設存在滿足題意的直線l,若l斜率不存在,易知
不符合題意,故其斜率存在,設為k,設
……………8分
解得 代入驗證成立
…………………………………………12分
22. 解:(Ⅰ) 由
∴ ……………………………………………………3分
(Ⅱ)∵
∴,
∴…………7分
(Ⅲ)由(Ⅱ)知
而
當時,
法1:∴
∴…………………………12分
法2:原不等式只需證:
∵時,
∴
∴
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com