廣東省2009屆高三數(shù)學(xué)模擬試題分類匯總――立體幾何

一、選擇題

1、(2009揭陽)某師傅需用合板制作一個(gè)工作臺(tái),工作臺(tái)由主體和附屬兩部分組成,主體部分全封閉,附屬部分是為了防止工件滑出臺(tái)面而設(shè)置的三面護(hù)墻,其大致形狀的三視圖如右圖所示(單位長度: cm), 則按圖中尺寸,做成的工作臺(tái)用去的合板的面積為(制作過程合板的損耗和合板厚度忽略不計(jì))( 。〥 w

試題詳情

.w.w.k.s.5.u.c.o.m

 

試題詳情

A.                  B  

試題詳情

C.           D.

試題詳情

2、(2009廣東五校)在下列關(guān)于直線、與平面、的命題中,真命題是(   )B

試題詳情

(A)若,且,則                (B)若,且,則

試題詳情

(C)若,且,則            (D)若,且,則

試題詳情

3、(2009番禺)一個(gè)幾何體的三視圖如右圖,其中主視圖和左視圖都是邊長為1的正三角形,那么這個(gè)幾何體的側(cè)面積為( 。〢

試題詳情

   A.               B.           C.          D.

試題詳情

4、(2009吳川)已知α、β是兩個(gè)不同平面,m、n是兩條不同直線,則下列命題不正確的是(    )D

試題詳情

       A.                        B.mn,m⊥α,則n⊥α

       C.n∥α,n⊥β,則α⊥β       D.m∥β,mn,則n⊥β

試題詳情

5、(2009北江中學(xué))如圖是一個(gè)空間幾何體的主視圖、左視圖、俯視圖,如果主視圖、左視圖所對應(yīng)的三角形皆為邊長為2的正三角形,主視圖對應(yīng)的四邊形為正方形,那么這個(gè)幾何體的體積為(  )B w.w.w.k.s.5.u.c.o.m

試題詳情

  A.     B.       C.      D.不確定

試題詳情

6、(2009北江中學(xué))已知是兩個(gè)不同的平面,m,n是兩條不同的直線,給出下列命題:

試題詳情

①若;

試題詳情

②若;

試題詳情

③如果相交;

試題詳情

④若

其中正確的命題是 (    ) D

       A.①②                               B.②③                C.③④               D.①④

試題詳情

7、(2009珠海)已知某個(gè)幾何體的三視圖如下,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個(gè)幾何體的體積是( C  )

試題詳情

A.           B.       

試題詳情

C.        D.

 

試題詳情

8、(2009潮州)設(shè)、是空間不同的直線或平面,對下列四種情形:

試題詳情

、、均為直線;② *、是直線,是平面;③ 是直線,、是平面;④ 、均為平面。

試題詳情

其中使“”為真命題的是 ( 。〤

     A ③ ④           B ① ③                       C ② ③                    D ① ②

試題詳情

9、(2009澄海)設(shè)m,n是兩條不同的直線,,,是三個(gè)不同的平面,給出下列四個(gè)命題:

試題詳情

①若m⊥,n∥,則m⊥n;

試題詳情

②若,,m⊥,則m⊥;

試題詳情

③若m∥,n∥,則m∥n;

試題詳情

④若,則

其中正確命題的序號(hào)是( 。〢

A.①和②        B.②和③      C.③和④       D.①和④

試題詳情

10、(2009韶關(guān)田家炳)設(shè)是兩條不同的直線,是兩個(gè)不同的平面,下列命題中,其中正確的命題是(     )

試題詳情

A.        B.

試題詳情

C.         D.

試題詳情

二、解答題

1、(2009廣雅期中)已知四棱錐的三視圖如下圖所示,是側(cè)棱上的動(dòng)點(diǎn).

試題詳情

(1) 求四棱錐的體積;

試題詳情

(2) 是否不論點(diǎn)在何位置,都有?證明你的結(jié)論;

試題詳情

(3) 若點(diǎn)的中點(diǎn),求二面角的大小.

 

 

 

試題詳情

 

 

 

 

 

 

 

 

試題詳情

2、(2009廣雅期中)如圖,已知平面,平面,△為等邊三角形,

試題詳情

,的中點(diǎn).

試題詳情

(1) 求證:平面;

試題詳情

(2) 求證:平面平面

試題詳情

(3) 求直線和平面所成角的正弦值.

 

 

 

 

 

 

 

 

 

 

 

試題詳情

3、(09廣東四校理期末)如圖所示,在矩形ABCD中,AD=2AB=2,點(diǎn)E是AD的中點(diǎn),將△DEC沿CE折起到△D′EC的位置,使二面角DECB是直二面角.

    (1)證明:BEC D;

    (2)求二面角D―BCE的正切值.

                                      

 

 

 

 

 

 

 

 

 

 

4(09廣東四校文期末)如圖:直三棱柱ABC-A1B1C1中,  AC=BC=AA1=2,∠ACB=90°.E為BB1的中點(diǎn),D點(diǎn)在AB上且DE=.

(Ⅰ)求證:CD⊥平面A1ABB1;

試題詳情

(Ⅱ)求三棱錐A1-CDE的體積.

 

 

 

 

 

 

 

 

 

 

試題詳情

5、(09北江中學(xué)文期末)如圖,在底面是矩形的四棱錐中,、為別為、

試題詳情

的中點(diǎn),且,

試題詳情

(Ⅰ)求四棱錐的體積;

試題詳情

(Ⅱ)求證:直線∥平面

  

 

 

 

 

試題詳情

 

 

 

 

 

 

 

試題詳情

6、(2009廣東東莞)在直三棱柱中,,,且異面直線所成的角等于,設(shè).

試題詳情

(1)求的值;

試題詳情

(2)求平面與平面所成的銳二面角的大小.

 

 

 

 

 

 

 

 

 

 

試題詳情

7、(2009廣州海珠)如圖6,在直角梯形ABCP中,AP//BC,APAB,AB=BC=,D是AP的中點(diǎn),E,F(xiàn),G分別為PC、PD、CB的中點(diǎn),將沿CD折起,使得平面ABCD,如圖7.

(Ⅰ)求證:AP//平面EFG;

試題詳情

 (Ⅱ) 求二面角的大小;

試題詳情

(Ⅲ)求三棱椎的體積.

 

 

 

 

試題詳情

 

 

 

 

 

 

 

 

 

 

試題詳情

8、(2009廣州(一))如圖,四棱錐中,平面,四邊形是矩形,分別是、的中點(diǎn).若

試題詳情

(Ⅰ)求證:平面;

試題詳情

(Ⅱ) 求點(diǎn)到平面的距離;

試題詳情

(Ⅲ)求直線平面所成角的正弦值.

 

 

 

 

 

 

 

 

 

 

 

試題詳情

9、(2009廣東揭陽)如圖,已知是底面為正方形的長方體,,點(diǎn)上的動(dòng)點(diǎn).

試題詳情

(1)試判斷不論點(diǎn)上的任何位置,是否都有平面

試題詳情

垂直于平面?并證明你的結(jié)論;

試題詳情

(2)當(dāng)的中點(diǎn)時(shí),求異面直線所成角的余弦值;

試題詳情

(3)求與平面所成角的正切值的最大值.

 

 

 

 

 

 

 

 

 

 

試題詳情

10、(2009廣東潮州期末)如圖,在四棱錐中,底面為直角梯形,垂直于底面,分別為的中點(diǎn)。                                       

試題詳情

(1)求證:;(2)求與平面所成的角;(3)求截面的面積。

試題詳情



 

 

 

 

 

 

 

 

 

試題詳情

11、(2009珠海期末)已知平面,,交于點(diǎn),,

試題詳情

(1)取中點(diǎn),求證:平面

試題詳情

(2)求二面角的余弦值。

 

 

 

 

 

試題詳情

12、(2009中山期末)如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn),

試題詳情

試題詳情

       (I)求證:平面BCD;

       (II)求異面直線AB與CD所成角的余弦;

       (III)求點(diǎn)E到平面ACD的距離.

 

 

 

 

 

 

 

 

 

 

 

 

答案:

試題詳情

1、解:(1) 由三視圖可知,四棱錐的底面是邊長為1的正方形,

試題詳情

側(cè)棱底面,且.                             …………2分

試題詳情

,

試題詳情

即四棱錐的體積為.                                …………4分

試題詳情

(2) 不論點(diǎn)在何位置,都有.                              …………5分

試題詳情

證明如下:連結(jié),∵是正方形,∴.           …………6分

試題詳情

底面,且平面,∴.        …………7分

試題詳情

又∵,∴平面.                         …………8分

試題詳情

∵不論點(diǎn)在何位置,都有平面

試題詳情

∴不論點(diǎn)在何位置,都有.                           …………9分

試題詳情

(3) 解法1:在平面內(nèi)過點(diǎn),連結(jié).

試題詳情

,,

試題詳情

∴Rt△≌Rt△,

試題詳情

從而△≌△,∴.

試題詳情

為二面角的平面角.                              …………12分

試題詳情

在Rt△中,,

試題詳情

,在△中,由余弦定理得

試題詳情

,              …………13分

試題詳情

,即二面角的大小為.           …………14分

試題詳情

解法2:如圖,以點(diǎn)為原點(diǎn),所在的直線分別為軸建立空間直角

試題詳情

坐標(biāo)系. 則,從而

試題詳情

,,,. …………10分

試題詳情

設(shè)平面和平面的法向量分別為

試題詳情

,,

試題詳情

,取.      …………11分

試題詳情

,取.  …………12分

試題詳情

設(shè)二面角的平面角為,則,         …………13分

試題詳情

  ∴,即二面角的大小為.        …………14分

試題詳情

2、方法一:

試題詳情

(1) 證法一:取的中點(diǎn),連.

試題詳情

的中點(diǎn),∴. …………1分

試題詳情

平面平面,

試題詳情

,∴.                    …………2分

試題詳情

,∴.                  …………3分

試題詳情

∴四邊形為平行四邊形,則.    …………4分

試題詳情

    ∵平面,平面,

試題詳情

平面.                          …………5分

試題詳情

證法二:取的中點(diǎn),連.

試題詳情

的中點(diǎn),∴.                     …………1分

試題詳情

平面,平面,∴.             …………2分

試題詳情

,

試題詳情

∴四邊形為平行四邊形,則.                …………3分

試題詳情

平面,平面,

試題詳情

平面平面.

試題詳情

,∴平面平面.             …………4分

試題詳情

    ∵平面,

試題詳情

平面.                      …………5分

試題詳情

(2) 證:∵為等邊三角形,的中點(diǎn),∴.      …………6分

試題詳情

平面平面,∴.           …………7分

試題詳情

,故平面.                   …………8分

試題詳情

,∴平面.                       …………9分

試題詳情

平面,

試題詳情

∴平面平面.                 …………10分(3)

試題詳情

解:在平面內(nèi),過,連.

試題詳情

  ∵平面平面, ∴平面.

試題詳情

和平面所成的角.                  …………12分

試題詳情

設(shè),則,

試題詳情

試題詳情

R t△中,.

試題詳情

∴直線和平面所成角的正弦值為.                                                           …………14分

方法二:

試題詳情

設(shè),建立如圖所示的坐標(biāo)系,則

試題詳情

.…………2分

試題詳情

的中點(diǎn),∴.                  …………3分

試題詳情

 (1) 證:,        …………4分

試題詳情

,平面,∴平面.  …………5分

試題詳情

 (2) 證:∵,         …………6分

試題詳情

,∴.      …………8分

試題詳情

平面,又平面

試題詳情

∴平面平面.                    …………10分

試題詳情

 (3) 解:設(shè)平面的法向量為,由可得:

試題詳情

     ,取.       …………12分

試題詳情

     又,設(shè)和平面所成的角為,則

試題詳情

    .

試題詳情

∴直線和平面所成角的正弦值為.             …………14分

試題詳情

3、解:(1)∵AD=2AB=2,E是AD的中點(diǎn),

       ∴△BAE,△CDE是等腰直角三角形,

易知, ∠BEC=90°,即BE⊥EC.

       又∵平面D′EC⊥平面BEC,面D′EC∩面BEC=EC,

       ∴BE⊥面D′EC,又C DÌ 面D′EC ,  ∴BE⊥CD′;

   (2)法一:設(shè)M是線段EC的中點(diǎn),過M作MF⊥BC

試題詳情

       垂足為F,連接D′M,D′F,則D′M⊥EC.

       ∵平面D′EC⊥平面BEC,

       ∴D′M⊥平面EBC,

       ∴MF是D′F在平面BEC上的射影,由三垂線定理得:

         D′F⊥BC

       ∴∠D′FM是二面D′―BC―E的平面角.

試題詳情

       在Rt△D′MF中,D′M=EC=,MF=AB=

試題詳情

       ∴

試題詳情

       即二面角D′―BC―E的正切值為.

       法二:如圖,以EB,EC為x軸、y軸,過E垂直于平面BEC的射線為z軸,建立空間直角坐標(biāo)系.

試題詳情

       則B(,0,0),C(0,,0),D′(0,,

試題詳情

       設(shè)平面BEC的法向量為;平面D′BC的法向量為

試題詳情

      

試題詳情

        Þ tan= ∴二面角D′―BC―E的正切值為.

試題詳情

4、解:(1)在Rt△DBE中,BE=1,DE=,∴BD=== AB,∴  則D為AB中點(diǎn),  而AC=BC, ∴CD⊥AB                                                             

 又∵三棱柱ABC-A1B1C1為直三棱柱, ∴CD⊥AA1

 又 AA1∩AB=A 且 AA1、AB Ì 平面A1ABB1

 故 CD⊥平面A1ABB1                                                                                  6分

(2)解:∵A1ABB1為矩形,∴△A1AD,△DBE,△EB1A1都是直角三角形,

試題詳情

∴  

       =2×2-××2-××1-×2×1=

∴   VA1CDE =VCA1DE = ×SA1DE ×CD= ××=1

∴   三棱錐A1-CDE的體積為1.                                                                 14分

試題詳情

5、解:(1)取AD的中點(diǎn)O,連接EO,則EO是PAD的中位線,得EO∥PA,故EOABCD,

試題詳情

EO是四棱錐的高,  6分

試題詳情

(2)取PC的中點(diǎn)G,連EG,FG, 由中位線得EG∥CD,EG=CD=AF,  四邊形AFGE是平行四邊形,   6分

試題詳情

6、解法一:(1),

試題詳情

就是異面直線所成的角,

試題詳情

,……(2分)

試題詳情

連接,又,則

試題詳情

為等邊三角形,……………………………4分

試題詳情

,,

試題詳情

;………6分

試題詳情

(2)取的中點(diǎn),連接,過,連接,

試題詳情

,平面

試題詳情

                             ………………8分

試題詳情

,所以平面,即,

試題詳情

所以就是平面與平面所成的銳二面角的平面角!10分

試題詳情

中,,,,

試題詳情

,…………………………13分

試題詳情

因此平面與平面所成的銳二面角的大小為!14分

試題詳情

說明:取的中點(diǎn),連接,…………同樣給分(也給10分)

試題詳情

解法二:(1)建立如圖坐標(biāo)系,于是,,

試題詳情

,, …………3分

試題詳情

由于異面直線所成的角,

試題詳情

所以的夾角為

試題詳情

試題詳情

………6分

                                                          

試題詳情

(2)設(shè)向量平面

試題詳情

于是,即,             

試題詳情

,,所以,不妨設(shè)……8分

試題詳情

同理得,使平面,(10分)

試題詳情

設(shè)的夾角為,所以依,

試題詳情

,………………12分

試題詳情

平面,平面,

試題詳情

因此平面與平面所成的銳二面角的大小為!14分

試題詳情

說明:或者取的中點(diǎn),連接,于是顯然平面

試題詳情

7、解:(Ⅰ) 證明:方法一)連AC,BD交于O點(diǎn),連GO,FO,EO.

試題詳情

∵E,F分別為PC,PD的中點(diǎn),,同理,

試題詳情

四邊形EFOG是平行四邊形,平面EFOG. ……3分

試題詳情

又在三角形PAC中,E,O分別為PC,AC的中點(diǎn),PA//EO……4分

試題詳情

平面EFOG,PA平面EFOG, ……5分

試題詳情

PA//平面EFOG,即PA//平面EFG. ……6分

方法二) 連AC,BD交于O點(diǎn),連GO,FO,EO.

試題詳情

∵E,F分別為PC,PD的中點(diǎn),,同理

試題詳情

,

試題詳情

平面EFG//平面PAB, ……4分

試題詳情

又PA平面PAB,平面EFG. ……6分

試題詳情

方法三)如圖以D為原點(diǎn),以

試題詳情

為方向向量建立空間直角坐標(biāo)系.

則有關(guān)點(diǎn)及向量的坐標(biāo)為:

試題詳情

試題詳情

……2分

試題詳情

設(shè)平面EFG的法向量為

試題詳情

.……4分

試題詳情

,……5分

試題詳情

平面EFG. AP//平面EFG. ……6分

試題詳情

(Ⅱ)由已知底面ABCD是正方形,又∵面ABCD

試題詳情

試題詳情

平面PCD,向量是平面PCD的一個(gè)法向量,=……8分

試題詳情

又由(Ⅰ)方法三)知平面EFG的法向量為……9分

試題詳情

……10分

試題詳情

結(jié)合圖知二面角的平面角為……11分

試題詳情

(Ⅲ) ……13分

試題詳情

試題詳情

8、解法一:  (I)取PC的中點(diǎn)G,連結(jié)EG,FG,又由FPD中點(diǎn),

試題詳情

則  F G .                   …2分

=

=

試題詳情

    ∴四邊形AEGF是平行四邊形.

試題詳情

   平面PCE,EG…………5分

試題詳情

   (II)

試題詳情

             

試題詳情

             

                                                                                                  …………3分

試題詳情

             

試題詳情

              .                            …………5分

試題詳情

   (III)由(II)知

試題詳情

             

試題詳情

直線FC與平面PCE所成角的正弦值為.            …………4分

試題詳情

解法二:如圖建立空間直角坐標(biāo)系

試題詳情

A(0,0,0),P(0,0,3),D(0,3,0),E,0,0),F(0,,),

試題詳情

       C,3,0)            ………2分

試題詳情

   (I)取PC的中點(diǎn)G,連結(jié)EG,        則G

試題詳情

    • <code id="2gaam"><dd id="2gaam"></dd></code>
      • <button id="2gaam"></button>

        試題詳情

        試題詳情

                      …………5分

        試題詳情

           (II)設(shè)平面PCE的法向量為

        試題詳情

                     

                                                         ………3分

        試題詳情

                     

        試題詳情

                                         …………5分

        試題詳情

           (III)

        試題詳情

                 ………2分

        試題詳情

                      直線FC與平面PCE所成角的正弦值為.           …………4分

        試題詳情

        9、解:(1)不論點(diǎn)上的任何位置,都有平面垂直于平面.---1分

        試題詳情

        證明如下:由題意知,

        試題詳情

            平面

        試題詳情

        平面   平面平面.------------------4分

        試題詳情

        (2)解法一:過點(diǎn)P作,垂足為,連結(jié)(如圖),則

        試題詳情

        是異面直線所成的角.----------------------6分

        試題詳情

        中 ∵   ∴

        試題詳情

        ,   ,      

        試題詳情

         

        試題詳情

        試題詳情

        中,

        試題詳情

        .----------8分

        試題詳情

        異面異面直線所成角的余弦值為.----------------9分

        試題詳情

        解法二:以為原點(diǎn),所在的直線為x軸建立空間直角坐標(biāo)系如圖示,則,,,,

        試題詳情

        -----6分

        試題詳情

        試題詳情

        ∴異面異面直線所成角的余弦值為.-----9分

        試題詳情

        (3)由(1)知,平面,

        試題詳情

        與平面所成的角,---------------------------10分

        試題詳情

        .------------------------------------11分

        試題詳情

        當(dāng)最小時(shí),最大,這時(shí),由--13分

        試題詳情

        ,即與平面所成角的正切值的最大值.---14分

        試題詳情

        10、(1)證明:因?yàn)?sub>的中點(diǎn),, 所以。  

                                                  

        試題詳情

        底面,得

        試題詳情

        ,即,

        試題詳情

         平面,所以

        試題詳情

         平面,

        試題詳情

        。                           ………… 4分

        試題詳情

        (2)連結(jié),

        試題詳情

        因?yàn)?sub>平面,即平面,

        試題詳情

        所以與平面所成的角,

        試題詳情

        中,

        試題詳情

        中,,故,

        試題詳情

        中, ,

        試題詳情

        ,

        試題詳情

        與平面所成的角是。        …… 10分

        試題詳情

        (3)由分別為的中點(diǎn),得,且,

        試題詳情

        ,故

        試題詳情

        由(1)得平面,又平面,故,

        試題詳情

        四邊形是直角梯形,

        試題詳情

        中,,,

        試題詳情

         截面的面積。  …… 14分

        試題詳情

        11、解法1:(1)聯(lián)結(jié)

        試題詳情

        ,,AC=AC

        試題詳情

        ,………………………………….2分

        試題詳情

        中點(diǎn),……………………………………..3分

        試題詳情

        中點(diǎn),

        試題詳情

        ,………………………………………….4分

        試題詳情

        平面…………………………………….5分

        試題詳情

        (2)聯(lián)結(jié),

        試題詳情

        ,

        試題詳情

        ∴在等邊三角形中,中線,…………6分

        試題詳情

        底面,    ∴,

        試題詳情

        ,………………………………….7分

        試題詳情

         ∴平面平面。…………………….8分

        試題詳情

        ,則平面

        試題詳情

        中點(diǎn),聯(lián)結(jié)、,則等腰三角形中,,

        試題詳情

        ,∴平面,∴,

        試題詳情

        是二面角的平面角……………….10分

        試題詳情

        等腰直角三角形中,,等邊三角形中,,

        試題詳情

        ∴Rt中,,∴,…………12分

        試題詳情

        .

        試題詳情

        ∴二面角的余弦值為!.14分

          解法2:

        試題詳情

        分別為軸,為原點(diǎn),建立如圖所示空間直角坐標(biāo)系,

        試題詳情

        試題詳情

        ,…………………………………2分

        試題詳情

        是等邊三角形,且中點(diǎn),

        試題詳情

        、、、、、…………………………………………4分

        試題詳情

        (1)…………………5分

        試題詳情

        ,

        試題詳情

        ,∴平面………………….………7分

        試題詳情

        (2)設(shè)平面的法向量分別為,.………9分

        試題詳情

        的夾角的補(bǔ)角就是二面角的平面角;……………….………10分

        試題詳情

        ,

        試題詳情

        ,,….………12分

        試題詳情

        ,

        試題詳情

        ∴二面角的余弦值為!.……………………………………………14分

        試題詳情

        12、解:方法一:

               (I)證明:連結(jié)OC

        試題詳情

               ………1分

        試題詳情

              

        試題詳情

               在中,由已知可得

        試題詳情

               而   

        試題詳情

               ……………3分

        試題詳情

                又

        試題詳情

              平面……………5分

        試題詳情

               (II)解:取AC的中點(diǎn)M,連結(jié)OM、ME、OE,由E為BC的中點(diǎn)知

        試題詳情

               直線OE與EM所成的銳角就是異面直線AB與CD所成的角!6分

        試題詳情

                在中,

        試題詳情

               ……………7分

        試題詳情

               是直角斜邊AC上的中線,

        試題詳情

             ……………8分

        試題詳情

        試題詳情

               異面直線AB與CD所成角大小的余弦為;……………9分

        試題詳情

               (III)解:設(shè)點(diǎn)E到平面ACD的距離為

        試題詳情

                      ……………11分

        試題詳情

        中,

        試題詳情

                 ……………12分

        試題詳情

        ……………13分

        試題詳情

                  點(diǎn)E到平面ACD的距離為………14分

               方法二:

               (II)解:以O(shè)為原點(diǎn),如圖建立空間直角坐標(biāo)系,

        試題詳情

               (I)同方法一.……………5分

        ………………6分

        試題詳情

               …………7分

        試題詳情

        ………9分

              

        試題詳情

        異面直線AB與CD所成角大小的余弦為;……………10分

        試題詳情

               (III)解:設(shè)平面ACD的法向量為則      

        試題詳情

        ……………11分      

        試題詳情

               令是平面ACD的一個(gè)法向量.……………12分

        試題詳情

               又 點(diǎn)E到平面ACD的距離

        試題詳情

        ……………14分

         

        試題詳情


        同步練習(xí)冊答案