江蘇省如皋市2009屆高三第一次統(tǒng)一考試

數(shù)學(xué)試卷(理科)

一、填空題

1. 若,則的值等于      

試題詳情

2. 設(shè)          .

(按由小到大的順序排列)

試題詳情

3. 設(shè)、,則           條件.

試題詳情

4. 函數(shù)的定義域?yàn)?u>              .

試題詳情

5. 把函數(shù)的圖像向左平移2個(gè)單位,再向下平移1個(gè)單位,所得圖像的函數(shù)解析式為_(kāi)____________.

試題詳情

6. 已知,

試題詳情

的最大值為             

試題詳情

7. 設(shè)是非空集合,定義:.已知

試題詳情

,為_(kāi)_________.

試題詳情

8. 如果一個(gè)點(diǎn)是一個(gè)指數(shù)函數(shù)與一個(gè)對(duì)數(shù)函數(shù)的圖像的公共點(diǎn),那么稱(chēng)這個(gè)點(diǎn)為“好點(diǎn)”.在下面的五個(gè)點(diǎn)、中,“好點(diǎn)”的個(gè)數(shù)為       個(gè).

試題詳情

9. 已知點(diǎn),B(,O(0,0),則△ABO為          三角形.

試題詳情

10.已知函數(shù)的定義域?yàn)?sub>,且,則         

試題詳情

11.直線上與點(diǎn)P(-2,3)距離為的點(diǎn)的坐標(biāo)為     

試題詳情

12.已知定義在R上的偶函數(shù)滿(mǎn)足條件:,且在[-1,0]上是增函數(shù),給出下面關(guān)于的命題:①是周期函數(shù);②的圖象關(guān)于直線x=1對(duì)稱(chēng);

試題詳情

在[0,1]上是增函數(shù);④在[1,2]上是減函數(shù);⑤其中正確的命題序號(hào)是              .(注:把你認(rèn)為正確的命題序號(hào)都填上)

試題詳情

13.已知定義在實(shí)數(shù)集上的偶函數(shù)在區(qū)間上是單調(diào)增函數(shù),則不等式的解集為_(kāi)_________.

試題詳情

14.今有一組實(shí)驗(yàn)數(shù)據(jù)如下:

試題詳情

試題詳情

1.99

試題詳情

3.0

試題詳情

4.0

試題詳情

5.1

試題詳情

6.12

試題詳情

試題詳情

1.5

試題詳情

4.04

試題詳情

7.5

12

試題詳情

18.01

現(xiàn)準(zhǔn)備用下列函數(shù)中的一個(gè)近似地表示這些數(shù)據(jù)滿(mǎn)足的規(guī)律,其中最接近的一個(gè)是

試題詳情

        (填函數(shù)表達(dá)式的序號(hào)).

試題詳情

(A);(B);(C) ;(D)

試題詳情

二、解答題

15.(本小題滿(mǎn)分14分)

試題詳情

已知二次函數(shù)的二次項(xiàng)系數(shù)為,且不等式的解集為

試題詳情

(1)若方程有兩個(gè)相等的根,求的解析式;

試題詳情

(2)若的最大值為正數(shù),求的取值范圍.

 

 

試題詳情

16.(本小題滿(mǎn)分14分)

試題詳情

若兩條曲線的極坐標(biāo)方程分別為=l與=2cos(θ+),它們相交于A,B兩點(diǎn),求線段AB的長(zhǎng).

 

試題詳情

17.(本小題滿(mǎn)分15分)

試題詳情

已知集合A=,B=

試題詳情

(1)當(dāng)m=2時(shí),求AB;(2)求使BA的實(shí)數(shù)m的取值范圍.已知,設(shè)P:

試題詳情

18.(本小題滿(mǎn)分15分)

試題詳情

已知函數(shù)滿(mǎn)足,其中

試題詳情

(1)求函數(shù)的解析式,并判斷其奇偶性單調(diào)性;

試題詳情

(2)對(duì)于函數(shù),當(dāng)時(shí),,求實(shí)數(shù)的取值范圍;

試題詳情

(3)當(dāng)時(shí),的值恒為負(fù)數(shù),求的取值范圍.

試題詳情

19.(本小題滿(mǎn)分16分)

試題詳情

已知二次函數(shù)為偶函數(shù),函數(shù)f(x)的圖象與直線y=x相切.

(1)求f(x)的解析式

試題詳情

(2)已知k的取值范圍為,則是否存在區(qū)間[m,n](m<n,使得f(x)在區(qū)間[m,n]上的值域恰好為[km,kn]?若存在,請(qǐng)求出區(qū)間[m,n];若不存在,請(qǐng)說(shuō)明理由.

 

 

試題詳情

20.(本小題滿(mǎn)分16分)

試題詳情

記函數(shù)f(x)的定義域?yàn)?/sub>D,若存在,使成立,則稱(chēng)為坐標(biāo)的點(diǎn)為函數(shù)f(x)圖象上的不動(dòng)點(diǎn).

試題詳情

1)若函數(shù)圖象上有兩個(gè)關(guān)于原點(diǎn)對(duì)稱(chēng)的不動(dòng)點(diǎn),求a,b應(yīng)滿(mǎn)足的條件;

試題詳情

2)在(1)的條件下,若a=8,記函數(shù)f(x) 圖象上有兩個(gè)不動(dòng)點(diǎn)分別為A1A2,P為函數(shù)f(x)圖象上的另一點(diǎn),其縱坐標(biāo)>3,求點(diǎn)P到直線A1A2距離的最小值及取得最小值時(shí)的坐標(biāo);

3)下述命題:若定義在R上的奇函數(shù)f(x)圖象上存在有限個(gè)不動(dòng)點(diǎn),則不動(dòng)點(diǎn)有奇數(shù)個(gè)是否正確?若正確,給予證明;若不正確,請(qǐng)舉一反例.

 

2009屆高三暑期培訓(xùn)數(shù)學(xué)測(cè)試答題紙

試題詳情

一、填空題本大題共14小題,每小題530. 把答案填在題中橫線上.

1、               .      2、              .            3、              .

試題詳情

4、               .       5、              .     6、              .

試題詳情

7、               .       8、              .     9、              .

試題詳情

10、              .       11、              .    12、              .

試題詳情

13、              .       14、              .

 

15、(本小題滿(mǎn)分14分)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16、(本小題滿(mǎn)分14分)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

二、解答題:本大題共6小題,共90. 解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    <input id="ikekq"></input>
              • 20(本小題滿(mǎn)分16分)

                 

                 

                 

                  

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                試題詳情

                 

                一、填空題

                1.   2.   3.既不充分條件又不必要條件  4.[-4,-π][0,π]

                5.   6.6   7.   8.2個(gè)   9.等腰直角三角形

                10.   11.(-3,4),(-1,2)   12.①、②、⑤  13.

                14.C

                 

                二、解答題

                15.(本小題滿(mǎn)分14分)

                解:(1)設(shè)

                    它的解集為(1,3)得方程的兩根為1和3且a<0

                      ……(1)                      ……3分

                     有等根得

                             ……(2)                      ……6分

                     由(1)(2)及

                的解析式為                       ……8分

                (2)由

                                      ……10分

                                                           ……12分

                解得                               ……14分

                 

                16.(本小題滿(mǎn)分14分)

                解:由,                    ………………………………2分

                ,                 ……………………………………6分

                ,   …………………………10分

                .                               ……14分

                 

                 

                17.(本小題滿(mǎn)分15分).

                已知二次函數(shù)的二次項(xiàng)系數(shù)為,且不等式的解集為

                (1)若方程有兩個(gè)相等的根,求的解析式;

                (2)若的最大值為正數(shù),求的取值范圍.

                解:(1)設(shè)

                    它的解集為(1,3)得方程的兩根為1和3且a<0

                      ……(1)                      ……3分

                     有等根得

                             ……(2)                      ……6分

                     由(1)(2)及

                的解析式為                       ……8分

                (2)由

                                      ……10分

                                                           ……12分

                解得                               ……15分

                 

                18解:(1)當(dāng)m=2時(shí),A=(-2,2),B=(-1,3)∴ AB=(-1,2).……5分

                (2)當(dāng)m<0時(shí),B=(1+m,1-m)

                要使BA,必須,此時(shí)-1m<0;                    ……8分

                當(dāng)m=0時(shí),B=,BA;適合                               ……10分

                當(dāng)m>0時(shí),B=(1-m,m+1)

                要使BA,必須,此時(shí)0<m≤1.                     ……13分

                ∴綜上可知,使BA的實(shí)數(shù)m的取值范圍為[-1,1]               ……15分

                法2  要使BA,必須,此時(shí)-1m1;         ……13分

                ∴使BA的實(shí)數(shù)m的取值范圍為[-1,1]                         ……15分

                 

                18.(本小題滿(mǎn)分15分)

                (1)解:由

                .     ………………2分

                設(shè)

                                        =<0(討論a>1和0<a<1),

                得f(x)為R上的增函數(shù).                                   ………………5分

                (2)由,     …………7分

                ,        ………………9分

                得1<m<.                                          ………………10分

                (3)f(x)在R上為增函數(shù))f(x) 當(dāng)時(shí))f(x)-4的值恒為負(fù)數(shù),  ………13分

                而f(x)在R上單調(diào)遞增得f(2)-40,                     ………………15分

                19.(本小題滿(mǎn)分16分)

                解:(1)∵f(x+1)為偶函數(shù),

                恒成立,

                即(2a+b)x=0恒成立,∴2a+b=0.∴b=-2a.         ………………2分

                ∵函數(shù)f(x)的圖象與直線y=x相切,

                ∴二次方程有兩相等實(shí)數(shù)根,

                                         ………………6分

                (2)

                                     ………………8分

                為方程的兩根

                .                                 ………………11分

                ∵m<n且

                故當(dāng);

                當(dāng)k>1時(shí),

                當(dāng)k=1時(shí),[m,n]不存在.                              ………………16分

                20.(本小題滿(mǎn)分16分)

                解:(1)若函數(shù)f(x)不動(dòng)點(diǎn),則有,

                整理得          ①              ………………2分

                根據(jù)題意可判斷方程有兩個(gè)根,且這兩個(gè)根互為相反數(shù),得

                >4a  且<0

                所以b=3 ,a>0                                          ………………4分

                ,所以

                即b=3,a>0,且a≠9.                                   ………………5分

                (2)在(1)的條件下,當(dāng)a=8時(shí),

                ,解得兩個(gè)不動(dòng)點(diǎn)為,……6分

                設(shè)點(diǎn)P(x ,y),y>3 , >3解得x<-3               ………………8分

                設(shè)點(diǎn)P(x,y)到直線A1A2的距離為d,則

                .                                 ………………10分

                當(dāng)且僅當(dāng),即x=―4時(shí),取等號(hào),此時(shí)P(―4,4). ……12分

                (3)命題正確.                                              ………………13分

                因?yàn)?sub>f(x)定義在R上的奇函數(shù),所以f(―0)=―f(0) ,所以0是奇函數(shù)f(x)的一個(gè)不動(dòng)點(diǎn).

                設(shè)c≠0是奇函數(shù)f(x)的一個(gè)不動(dòng)點(diǎn),f(c)=c ,,所以―c也是f (x)的一個(gè)不動(dòng)點(diǎn).

                所以奇函數(shù)f(x)的非零不動(dòng)點(diǎn)如果存在,則必成對(duì)出現(xiàn),故奇函數(shù)f(x)的不動(dòng)點(diǎn)數(shù)目是奇數(shù)個(gè).                                                    ………………16分


                同步練習(xí)冊(cè)答案