21. 已知拋物線.橢圓.雙曲線都經(jīng)過點M(1.2).它們在x軸上有共闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢锝嗙缁炬儳顭烽弻鏇熺箾閻愵剚鐝旂紒鐐劤閻忔繈鍩為幋锔藉亹鐎规洖娴傞弳锟犳⒑閹肩偛鈧洟鎮ц箛娑樼疅闁归棿鐒﹂崑瀣煕椤愶絿绠橀柣鐔村姂濮婅櫣绱掑Ο铏圭懆闂佽绻戝畝鍛婁繆閻㈢ǹ绀嬫い鏍ㄦ皑椤斿﹪姊虹憴鍕剹闁搞劑浜跺顐c偅閸愨晝鍘介柟鍏肩暘閸ㄥ宕弻銉︾厵闁告垯鍊栫€氾拷查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知拋物線、橢圓、雙曲線都經(jīng)過點M(1,2),它們在x軸上有共同焦點,橢圓和雙曲線的對稱軸是坐標軸,拋物線的頂點為坐標原點。

(Ⅰ)求這三條曲線方程;

(Ⅱ)若定點P(3,0),A為拋物線上任意一點,是否存在垂直于x軸的直線l被以AP為直徑的圓截得的弦長為定值?若存在,求出l的方程;若不存在,說明理由。

查看答案和解析>>

(本小題滿分14分)

已知F1,F2分別是橢圓+=1的左、右焦點,曲線C是以坐標原點為頂點,以F2為焦點的拋物線,自點F1引直線交曲線CP、Q兩個不同的交點,點P關(guān)于x軸的對稱點記為M.設(shè)=λ.

(Ⅰ)求曲線C的方程;

(Ⅱ)證明:=-λ

(Ⅲ)若λ∈[2,3],求|PQ|的取值范圍.

 

 

查看答案和解析>>

(本小題滿分14分)

設(shè)橢圓方程為拋物線方程為如圖4所示,過點軸的平行線,與拋物線在第一象限的交點為G.已知拋物線在點G的切線經(jīng)過橢圓的右焦點

       (1)求滿足條件的橢圓方程和拋物線方程;

       (2)設(shè)AB分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點P,使得為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標) 。

查看答案和解析>>

(本小題滿分14分)設(shè)b>0,橢圓方程為,拋物線方程為.如圖4所示,過點F(0,b+2)作x軸的平行線,與拋物線在

第一象限的交點為G.已知拋物線在點G的切線經(jīng)

過橢圓的右焦點.

(1)求滿足條件的橢圓方程和拋物線方程;

(2)設(shè)A,B分別是橢圓長軸的左、右端點,試探究在

拋物線上是否存在點P,使得△ABP為直角三角形?

若存在,請指出共有幾個這樣的點?并說明理由

(不必具體求出這些點的坐標).

查看答案和解析>>

(本小題滿分14分)

設(shè)橢圓方程為拋物線方程為如圖4所示,過點軸的平行線,與拋物線在第一象限的交點為G.已知拋物線在點G的切線經(jīng)過橢圓的右焦點

       (1)求滿足條件的橢圓方程和拋物線方程;

       (2)設(shè)AB分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點P,使得為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標) 。

 

查看答案和解析>>


同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷