已知函數(shù)(a為實常數(shù)). (1) 當(dāng)a = 0時.求函數(shù)的最小值, (2) 若函數(shù)在上是單調(diào)函數(shù).求a的取值范圍. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)已知函數(shù)f(x)=alnx+x2(a為實常數(shù)).

(Ⅰ)若a=-2,求證:函數(shù)f(x)在(1,+∞)上是增函數(shù);

(Ⅱ)求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值;

 

查看答案和解析>>

(本小題滿分14分)已知函數(shù)f(x)=aex,g(x)= lna-ln(x +1)(其中a為常數(shù),e為自然對數(shù)底),函數(shù)y =f(x)在A(0,a)處的切線與y =g(x)在B(0,lna)處的切線互相垂直.

  (Ⅰ) 求f(x) ,g(x)的解析式;

  (Ⅱ) 求證:對任意n ÎN*,    f(n)+g(n)>2n;

  (Ⅲ) 設(shè)y =g(x-1)的圖象為C1,h(x)=-x2+bx的圖象為C2,若C1C2相交于PQ,過PQ中點垂直于x軸的直線分別交C1、C2M、N,問是否存在實數(shù)b,使得C1M處的切線與C2N處的切線平行?說明你的理由.

查看答案和解析>>

(本小題滿分14分)已知函數(shù)f(x)=aex,g(x)= lna-ln(x +1)(其中a為常數(shù),e為自然對數(shù)底),函數(shù)y =f(x)在A(0,a)處的切線與y =g(x)在B(0,lna)處的切線互相垂直.

  (Ⅰ) 求f(x) ,g(x)的解析式;

  (Ⅱ) 求證:對任意n ÎN*,    f(n)+g(n)>2n

  (Ⅲ) 設(shè)y =g(x-1)的圖象為C1,h(x)=-x2+bx的圖象為C2,若C1C2相交于P、Q,過PQ中點垂直于x軸的直線分別交C1、C2M、N,問是否存在實數(shù)b,使得C1M處的切線與C2N處的切線平行?說明你的理由.

查看答案和解析>>

(本小題滿分14分)已知函數(shù)f(x)=alnx+x2(a為實常數(shù)).
(Ⅰ)若a=-2,求證:函數(shù)f(x)在(1,+∞)上是增函數(shù);
(Ⅱ)求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值;

查看答案和解析>>

(本小題滿分14分)已知定義在實數(shù)集上的函數(shù)fn(x)=xn,n∈N*,其導(dǎo)函數(shù)記為,且滿足,a,x1,x2為常數(shù),x1≠x2
(1)試求a的值;
(2)記函數(shù),x∈(0,e],若F(x)的最小值為6,求實數(shù)b的值;
(3)對于(2)中的b,設(shè)函數(shù),A(x1,y1),B(x2,y2)(x1<x2)是函數(shù)g(x)圖象上兩點,若,試判斷x0,x1,x2的大小,并加以證明.

查看答案和解析>>


同步練習(xí)冊答案