題目列表(包括答案和解析)
如圖,四棱錐S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點(diǎn),SE=2EB
(Ⅰ)證明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小 .
【解析】本試題主要考查了立體幾何中的運(yùn)用。
(1)證明:因?yàn)镾D⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點(diǎn),SE=2EB 所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.
(Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知
AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.
故△ADE為等腰三角形.
取ED中點(diǎn)F,連接AF,則AF⊥DE,AF2= AD2-DF2 =.
連接FG,則FG∥EC,F(xiàn)G⊥DE.
所以,∠AFG是二面角A-DE-C的平面角.
連接AG,AG= 2 ,F(xiàn)G2= DG2-DF2 =,
cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,
所以,二面角A-DE-C的大小為120°
|
|
已知四棱錐的底面為直角梯形,,底面,且,,是的中點(diǎn)。
(1)證明:面面;
(2)求與所成的角;
(3)求面與面所成二面角的余弦值.
【解析】(1)利用面面垂直的性質(zhì),證明CD⊥平面PAD.
(2)建立空間直角坐標(biāo)系,寫出向量與的坐標(biāo),然后由向量的夾角公式求得余弦值,從而得所成角的大小.
(3)分別求出平面的法向量和面的一個法向量,然后求出兩法向量的夾角即可.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com