21.橢圓C1:=1(a>b>0)的左右頂點(diǎn)分別為A.B.點(diǎn)P雙曲線C2:=1在第一象限內(nèi)的圖象上一點(diǎn).直線AP.BP與橢圓C1分別交于C.D點(diǎn).若△ACD與△PCD的面積相等. (1)求P點(diǎn)的坐標(biāo), (2)能否使直線CD過橢圓C1的右焦點(diǎn).若能.求出此時(shí)雙曲線C2的離心率.若不能.請說明理由. 查看更多

 

題目列表(包括答案和解析)

已知橢圓C1的方程是
x2
4
+y2=1
,雙曲線C2的左、右焦點(diǎn)分別為C1的左、右頂點(diǎn),C2的左、右頂點(diǎn)分別為C1的左、右焦點(diǎn).
(1)求雙曲線C2的方程;
(2)若直線l:y=kx+
2
與雙曲線C2恒有兩個(gè)不同的交點(diǎn)A,B,且
OA
OB
>2
(O為原點(diǎn)),求k的取值范圍;
(3)設(shè)P1,P2分別是C2的兩條漸近線上的點(diǎn),點(diǎn)M在C2上,且
OM
=
1
2
(
OP1
+
OP2
)
,求△P1OP2的面積.

查看答案和解析>>

已知橢圓C1
x2
2
+y2=1
和圓C2x2+y2=1,左頂點(diǎn)和下頂點(diǎn)分別為A,B,且F是橢圓C1的右焦點(diǎn).
(1)若點(diǎn)P是曲線C2上位于第二象限的一點(diǎn),且△APF的面積為
1
2
+
2
4
,求證:AP⊥OP;
(2)點(diǎn)M和N分別是橢圓C1和圓C2上位于y軸右側(cè)的動(dòng)點(diǎn),且直線BN的斜率是直線BM斜率的2倍,求證:直線MN恒過定點(diǎn).

查看答案和解析>>

設(shè)橢圓 C1
x2
a2
+
y2
b2
=1
(a>b>0)的一個(gè)頂點(diǎn)與拋物線 C2x2=4
3
y
 的焦點(diǎn)重合,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn),離心率 e=
1
2
,過橢圓右焦點(diǎn) F2的直線 l 與橢圓 C 交于 M,N 兩點(diǎn).
(1)求橢圓C的方程;
(2)是否存在直線 l,使得 
OM
ON
=-2
,若存在,求出直線 l 的方程;若不存在,說明理由.

查看答案和解析>>

(本題滿分12分) 設(shè)橢圓 C1)的一個(gè)頂點(diǎn)與拋物線 C2 的焦點(diǎn)重合,F(xiàn)1,F(xiàn)2 分別是橢圓的左、右焦點(diǎn),離心率 ,過橢圓右焦點(diǎn) F2 的直線  與橢圓 C 交于 M,N 兩點(diǎn).

(I)求橢圓C的方程;

(II)是否存在直線 ,使得 ,若存在,求出直線  的方程;若不存在,說明理由;

(III)若 AB 是橢圓 C 經(jīng)過原點(diǎn) O 的弦,MN//AB,求證: 為定值.

 

查看答案和解析>>

(本題滿分12分)已知橢圓的離心率為,

直線與以原點(diǎn)為圓心、以橢圓的短半軸長為半徑的圓相切。

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)橢圓的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線過點(diǎn)F1,且垂直于橢圓的長軸,動(dòng)直

垂直于點(diǎn)P,線段PF2的垂直平分線交于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;

(Ⅲ)若AC、BD為橢圓C1的兩條相互垂直的弦,垂足為右焦點(diǎn)F2,求四邊形ABCD的面積

的最小值.

 

查看答案和解析>>


同步練習(xí)冊答案