題目列表(包括答案和解析)

 0  446066  446074  446080  446084  446090  446092  446096  446102  446104  446110  446116  446120  446122  446126  446132  446134  446140  446144  446146  446150  446152  446156  446158  446160  446161  446162  446164  446165  446166  446168  446170  446174  446176  446180  446182  446186  446192  446194  446200  446204  446206  446210  446216  446222  446224  446230  446234  446236  446242  446246  446252  446260  447348 

2、主題理論。教學(xué)過程:學(xué)生是能動(dòng)的決定因素,教就是要為學(xué)服務(wù),把學(xué)放在主體位置,把更多時(shí)間給學(xué)生,發(fā)揮學(xué)習(xí)的能動(dòng)性,注意針對性。復(fù)習(xí)時(shí),應(yīng)從學(xué)生實(shí)際出發(fā),針對知識缺陷,精選習(xí)題,讓學(xué)生練習(xí)。練習(xí)時(shí)采用這樣的方法“延時(shí)講解--分析思路--解題小結(jié)”,延時(shí)講解是讓學(xué)生看過題目后,自己進(jìn)行分析思考,主要是要提高學(xué)生的審題能力,通過審題收集信息,加工信息,熟悉題目并深入到題目內(nèi)部去思考,就會(huì)找到解題的入口,也會(huì)在解題的全過程中,不忽視任何一個(gè)細(xì)節(jié),這是把學(xué)生擺在主體位置的一個(gè)重要方面,F(xiàn)代心理學(xué)認(rèn)為,學(xué)生的解題活動(dòng)必須置于教師的合理控制之下,才會(huì)收到較好的效果。分析思路就是一個(gè)控制手段,最后解題完畢進(jìn)行小結(jié),指出本題所運(yùn)用到的某一個(gè)數(shù)學(xué)思想方法或技能的道理,練習(xí)解題,要使學(xué)生達(dá)到“三化”的要求:通過練習(xí)使學(xué)生對基本知識能消化,對基本方法的運(yùn)用達(dá)到優(yōu)化,對基本方法的掌握能強(qiáng)化。

試題詳情

教師在第一輪復(fù)習(xí)的基礎(chǔ)上,進(jìn)入第二輪從本質(zhì)上講,是將學(xué)過的知識和已具備的基本技能和方法運(yùn)用于解決問題的一種復(fù)習(xí)。因此,復(fù)習(xí)運(yùn)用好下面兩個(gè)理論來指導(dǎo),會(huì)收到事半功倍的效果。

1、整體原理。系統(tǒng)論中一個(gè)原理:任何系統(tǒng)內(nèi)部各部分都是互相作用,互相聯(lián)系的,任何系統(tǒng)都與外部發(fā)生聯(lián)系,總體功能大于部分功能,部分離開整體就失去其功能。如在解專題復(fù)習(xí)中,抓住數(shù)形結(jié)合這個(gè)整體思想,把各部分知識聯(lián)系起來,即在平面建立坐標(biāo)系統(tǒng)后,曲線應(yīng)用方程表示直線用一次方程來表示,圓錐曲線用二次方程來表示,運(yùn)用整體原理,就是這么幾句話就把一本書的內(nèi)容總結(jié)出來,不僅容易記住基本知識,又學(xué)會(huì)數(shù)形結(jié)合的數(shù)學(xué)解題思想。又如立體幾何專題部分的復(fù)習(xí),只要抓住“點(diǎn)、線、面”三者間的位置關(guān)系的整體思想,從平面到空間來構(gòu)建知識平臺(tái)。從而達(dá)到這本幾何讀薄。

試題詳情

22.(本小題滿分13分) 

(理)若{an}是正項(xiàng)遞增的等差數(shù)列,n∈N,k≥2,k∈N,求證: 

(Ⅰ); 

(Ⅱ); 

(文)已知等比數(shù)列{xn}的各項(xiàng)為不等于1的正數(shù),數(shù)列{yn}滿足yn·logxna=2(a>0且

a≠1),設(shè)y3=18,y6=12. 

(Ⅰ)求數(shù)列{yn}的前多少項(xiàng)和最大,最大值為多少? 

(Ⅱ)試判斷是否存在自然數(shù)M,使當(dāng)nM時(shí),xn>1恒成立?若存在,求出相應(yīng)的M,若不存在,請說明理由; 

(Ⅲ)令an=logxnxn+1(n>13,n∈N),試判斷數(shù)列{an}的增減性? 

試題詳情

21.(本小題滿分12分) 

(理)在東西方向直線延伸的湖岸上有一港口A,一艘機(jī)艇以40 km/h的速度從A港出發(fā),30分鐘后因故障而停在湖里,已知機(jī)艇出發(fā)后,先按直線前進(jìn),以后又改成正北,但不知 最初的方向和何時(shí)改變的方向,如果去營救,用圖示表示營救區(qū)域(提示:滿足不等式yax+b的點(diǎn)(x,y)不在y=ax+b的下方). 

(文)國貿(mào)城有一個(gè)個(gè)體戶,2001年一月初向銀行貸款10萬元作開店資金,每月獲得的利潤是該月初投入資金的20%,每月底所繳的房租和所得稅為該月所得金額(含利潤)的10%,每月生活費(fèi)和其他開支為3000元,余款作為資金全部投入再營業(yè),如此繼續(xù),問到2001年年,這一個(gè)體戶有現(xiàn)款多少元?(1.0812≈2.5)

試題詳情

20.(本小題滿分13分) 

已知拋物線Cy=-x2+6,點(diǎn)P(2,4),A、B在拋物線上,且直線PAPB的傾斜角互補(bǔ); 

(Ⅰ)證明:直線AB的斜率為定值; 

(Ⅱ)當(dāng)直線ABy軸上的截距為正數(shù)時(shí),求△PAB的面積S的最大值及此時(shí)直線AB的方程.

試題詳情

19.(本小題滿分12分) 

在四棱錐P-ABCD中,底面ABCD是矩形,側(cè)棱PA垂直于底面,EF分別是AB、PC的中點(diǎn), 

(Ⅰ)求證:CDPD; 

(Ⅱ)求證:EF∥平面PAD; 

(Ⅲ)當(dāng)平面PCD與平面ABCD成多大角時(shí),直線EF⊥平面PCD. 

試題詳情

18.(本小題滿分12分) 

已知復(fù)數(shù)z滿足(z+1)( +1)=|z2|,且是純虛數(shù); 

(Ⅰ)求z; 

(Ⅱ)求argz.

試題詳情

17.(本小題滿分12分) 

已知集合A={x|<1},B={x|log4(x+a)<1},若AB=,求實(shí)數(shù)a的取值范圍.

試題詳情

16.在△ABCAB,下列不等式中正確的是 

①sinA>sinB;②cosA<cosB;③sin2A>sin2B;④cos2A<cos2B 

其中正確的序號為______________. 

試題詳情

15.(理)已知直線l的參數(shù)方程為 (t為參數(shù)),若以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)P的極坐標(biāo)為(-2,π),則點(diǎn)P到直線l的距離為______________. 

(文)函數(shù)y=sinx-|sinx|的最小值為______________. 

試題詳情


同步練習(xí)冊答案