(Ⅰ)證明數(shù)列是等比數(shù)列, 查看更多

 

題目列表(包括答案和解析)

設(shè),

.

(Ⅰ)證明數(shù)列是常數(shù)數(shù)列;

(Ⅱ)試找出一個(gè)奇數(shù),使以18為首項(xiàng),7為公比的等比數(shù)列中的所有項(xiàng)都是數(shù)列中的項(xiàng),并指出是數(shù)列中的第幾項(xiàng).

查看答案和解析>>

20. 設(shè),.

(Ⅰ)證明數(shù)列是常數(shù)數(shù)列;

(Ⅱ)試找出一個(gè)奇數(shù),使以18為首項(xiàng),7為公比的等比數(shù)列中的所有項(xiàng)都是數(shù)列中的項(xiàng),并指出是數(shù)列中的第幾項(xiàng).

查看答案和解析>>

等比數(shù)列{cn}滿足cn+1+cn=5•22n-1,n∈N*,數(shù)列{an}滿足an=log2cn
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{bn}滿足bn=
1
anan+1
,Tn為數(shù)列{bn}的前n項(xiàng)和.求證:Tn
1
2
;
(Ⅲ)是否存在正整數(shù)m,n(1<m<n),使得T1,Tm,Tn成等比數(shù)列?若存在,求出所有m,n 的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

等比數(shù)列中,分別是下表第一、二、三行中的某一個(gè)數(shù),且中的任何兩個(gè)數(shù)不在下表的同一列.

第一列

第二列

第三列

第一行

3

2

10

第二行

6

4

14

第三行

9

8

18

(Ⅰ)求數(shù)列的通項(xiàng)公式;   

(Ⅱ)若數(shù)列滿足 ,記數(shù)列的前n項(xiàng)和為,證明

查看答案和解析>>

等比數(shù)列{an} 中,a1,a2,a3分別是下表第一、二、三行中的某一個(gè)數(shù),且a1,a2,a3中的任何兩個(gè)數(shù)不在下表的同一列.
第一列第二列第三列
第一行3210
第二行6414
第三行9818
(Ⅰ)求數(shù)列{an} 的通項(xiàng)公式;
(Ⅱ)若數(shù)列 {bn} 滿足 數(shù)學(xué)公式,記數(shù)列 {bn} 的前n項(xiàng)和為Sn,證明數(shù)學(xué)公式

查看答案和解析>>

一、選擇題

2,4,6

2,4,6

2.C  解析:由 不符合集合元素的互異性,故選C。

3.D  解析:

4.A  解析:由題可知,故選A.

5.C  解析:令公比為q,由a1=3,前三項(xiàng)的和為21可得q2+q-6=0,各項(xiàng)都為正數(shù),所以q=2,所以,故選C.

6.D 解析:上恒成立,即恒成立,故選D.

7.B  解析:因?yàn)槎x在R上函數(shù)是偶函數(shù),所以,故函數(shù)以4為周期,所以

8.C 解析:關(guān)于y軸的對(duì)稱圖形,可得

圖象,再向右平移一個(gè)單位,即可得的圖象,即的圖

象,故選C.

9.B  解析:可采取特例法,例皆為滿足條件的函數(shù),一一驗(yàn)證可知選B.

10.A  解析:故在[-2,2]上最大值為,所以最小值為,故選A.

二、填空題:

11.答案:6   解析:∵     ∴a7+a­11=6.

12.答案A=120°  解析:

13.答案:28  解析:由前面圖形規(guī)律知,第6個(gè)圖中小正方形的數(shù)量為1+2+3+…+7=28。

三、解答題:

15.解:(Ⅰ),,  令

3m=1    ∴    ∴

∴{an+}是以為首項(xiàng),4為公比的等比數(shù)列

(Ⅱ)      

    

16.解:(Ⅰ)

當(dāng)時(shí),的最小值為3-4

(Ⅱ)∵    ∴

時(shí),單調(diào)減區(qū)間為

17.解:(Ⅰ)的定義域關(guān)于原點(diǎn)對(duì)稱

為奇函數(shù),則  ∴a=0

(Ⅱ)

∴在

上單調(diào)遞增

上恒大于0只要大于0即可

上恒大于0,a的取值范圍為

18.解:(Ⅰ)延長RP交AB于M,設(shè)∠PAB=,則

AM =90

       =10000-

 

          

      ∴當(dāng)時(shí),SPQCR有最大值

      答:長方形停車場(chǎng)PQCR面積的最磊值為平方米。

      19.解:(Ⅰ)【方法一】由,

      依題設(shè)可知,△=(b+1)24c=0.

      .

      【方法二】依題設(shè)可知

      為切點(diǎn)橫坐標(biāo),

      于是,化簡(jiǎn)得

      同法一得

      (Ⅱ)由

      可得

      依題設(shè)欲使函數(shù)內(nèi)有極值點(diǎn),

      則須滿足

      亦即 ,

      故存在常數(shù),使得函數(shù)內(nèi)有極值點(diǎn).

      (注:若,則應(yīng)扣1分. )

      20.解:(Ⅰ)設(shè)函數(shù)

         (Ⅱ)由(Ⅰ)可知

      可知使恒成立的常數(shù)k=8.

      (Ⅲ)由(Ⅱ)知 

      可知數(shù)列為首項(xiàng),8為公比的等比數(shù)列

      即以為首項(xiàng),8為公比的等比數(shù)列. 則 

      .

       


      同步練習(xí)冊(cè)答案