已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1}且B≠,若A∪B=A.則A.-3≤m≤4 B.-3<m<4C.2<m<4 D.2<m≤4 查看更多

 

題目列表(包括答案和解析)

16、已知集合A={x|x2-x-12<0},集合B={x|x2+2x-8>0},求A∩B,A∪B.

查看答案和解析>>

9、已知集合M={1,2,3},N={2,3,4},則( 。

查看答案和解析>>

12、已知集合U={1,3,5,7,9},A={1,5,7},則CUA=( 。

查看答案和解析>>

已知集合A={x∈R||x|≤2}},B={x∈Z|
x
≤4}
,則A∩B=( 。
A、(0,2)
B、[0,2]
C、{0,2]
D、{0,1,2}

查看答案和解析>>

18、已知集合A={x|-3≤x≤1},B={x||x|≤2},則A∩B=( 。

查看答案和解析>>

難點(diǎn)磁場(chǎng)

解:由6ec8aac122bd4f6ex2+(m-1)x+1=0                                                   ①

AB6ec8aac122bd4f6e

∴方程①在區(qū)間[0,2]上至少有一個(gè)實(shí)數(shù)解.

首先,由Δ=(m-1)2-4≥0,得m≥3或m≤-1,當(dāng)m≥3時(shí),由x1+x2=-(m-1)<0及x1x2=1>0知,方程①只有負(fù)根,不符合要求.

當(dāng)m≤-1時(shí),由x1+x2=-(m-1)>0及x1x2=1>0知,方程①只有正根,且必有一根在區(qū)間(0,1]內(nèi),從而方程①至少有一個(gè)根在區(qū)間[0,2]內(nèi).

故所求m的取值范圍是m≤-1.

殲滅難點(diǎn)訓(xùn)練

一、1.解析:對(duì)Mk分成兩類:k=2nk=2n+1(nZ),M={x|x=nπ+6ec8aac122bd4f6e,nZ}∪{x|x=

nπ+6ec8aac122bd4f6e,nZ},對(duì)Nk分成四類,k=4nk=4n+1,k=4n+2,k=4n+3(nZ),N={x|x=nπ+6ec8aac122bd4f6e,nZ}∪{x|x=nπ+6ec8aac122bd4f6e,nZ}∪{x|x=nπ+π,nZ}∪{x|x=nπ+6ec8aac122bd4f6e,nZ}.

答案:C

2.解析:∵AB=A,∴B6ec8aac122bd4f6eA,又B6ec8aac122bd4f6e,

6ec8aac122bd4f6e即2<m≤4.

答案:D

二、3.a=0或a6ec8aac122bd4f6e

4.解析:由AB只有1個(gè)交點(diǎn)知,圓x2+y2=1與直線6ec8aac122bd4f6e=1相切,則1=6ec8aac122bd4f6e,即ab=6ec8aac122bd4f6e.

答案:ab=6ec8aac122bd4f6e

三、5.解:log2(x2-5x+8)=1,由此得x2-5x+8=2,∴B={2,3}.由x2+2x-8=0,∴C={2,-4},又AC=6ec8aac122bd4f6e,∴2和-4都不是關(guān)于x的方程x2ax+a2-19=0的解,而AB 6ec8aac122bd4f6e,即AB6ec8aac122bd4f6e,

∴3是關(guān)于x的方程x2ax+a2-19=0的解,∴可得a=5或a=-2.

當(dāng)a=5時(shí),得A={2,3},∴AC={2},這與AC=6ec8aac122bd4f6e不符合,所以a=5(舍去);當(dāng)a=-2時(shí),可以求得A={3,-5},符合AC=6ec8aac122bd4f6eAB 6ec8aac122bd4f6e,∴a=-2.

6.解:(1)正確.在等差數(shù)列{an}中,Sn=6ec8aac122bd4f6e,則6ec8aac122bd4f6e(a1+an),這表明點(diǎn)(an,6ec8aac122bd4f6e)的坐標(biāo)適合方程y6ec8aac122bd4f6e(x+a1),于是點(diǎn)(an, 6ec8aac122bd4f6e)均在直線y=6ec8aac122bd4f6ex+6ec8aac122bd4f6ea1上.

(2)正確.設(shè)(x,y)∈AB,則(x,y)中的坐標(biāo)x,y應(yīng)是方程組6ec8aac122bd4f6e的解,由方程組消去y得:2a1x+a12=-4(*),當(dāng)a1=0時(shí),方程(*)無解,此時(shí)AB=6ec8aac122bd4f6e;當(dāng)a1≠0時(shí),方程(*)只有一個(gè)解x=6ec8aac122bd4f6e,此時(shí),方程組也只有一解6ec8aac122bd4f6e,故上述方程組至多有一解.

AB至多有一個(gè)元素.

(3)不正確.取a1=1,d=1,對(duì)一切的xN*,有an=a1+(n-1)d=n>0,6ec8aac122bd4f6e >0,這時(shí)集合A中的元素作為點(diǎn)的坐標(biāo),其橫、縱坐標(biāo)均為正,另外,由于a1=1≠0.如果AB6ec8aac122bd4f6e,那么據(jù)(2)的結(jié)論,AB中至多有一個(gè)元素(x0,y0),而x0=6ec8aac122bd4f6e<0,y0=6ec8aac122bd4f6e<0,這樣的(x0,y06ec8aac122bd4f6eA,產(chǎn)生矛盾,故a1=1,d=1時(shí)AB=6ec8aac122bd4f6e,所以a1≠0時(shí),一定有AB6ec8aac122bd4f6e是不正確的.

7.解:由w=6ec8aac122bd4f6ezi+bz=6ec8aac122bd4f6e,

zA,∴|z-2|≤2,代入得|6ec8aac122bd4f6e-2|≤2,化簡(jiǎn)得|w-(b+i)|≤1.

∴集合A、B在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的集合是兩個(gè)圓面,集合A表示以點(diǎn)(2,0)為圓心,半徑為2的圓面,集合B表示以點(diǎn)(b,1)為圓心,半徑為1的圓面.

AB=B,即B6ec8aac122bd4f6eA,∴兩圓內(nèi)含.

因此6ec8aac122bd4f6e≤2-1,即(b-2)2≤0,∴b=2.

8.(1)證明:設(shè)x0是集合A中的任一元素,即有x0A.

A={x|x=f(x)},∴x0=f(x0).

即有ff(x0)]=f(x0)=x0,∴x0B,故A6ec8aac122bd4f6eB.

(2)證明:∵A={-1,3}={x|x2+px+q=x},

∴方程x2+(p-1)x+q=0有兩根-1和3,應(yīng)用韋達(dá)定理,得

6ec8aac122bd4f6e

f(x)=x2x-3.

于是集合B的元素是方程ff(x)]=x,也即(x2x-3)2-(x2x-3)-3=x(*)的根.

將方程(*)變形,得(x2x-3)2x2=0

解得x=1,3,6ec8aac122bd4f6e,-6ec8aac122bd4f6e.

B={-6ec8aac122bd4f6e,-1,6ec8aac122bd4f6e,3}.

 

 

本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!

 


同步練習(xí)冊(cè)答案