[解析]記.則. 查看更多

 

題目列表(包括答案和解析)

【2012高考江蘇26】(10分)設(shè)集合,.記為同時滿足下列條件的集合的個數(shù):

;②若,則;③若,則。

(1)求;

(2)求的解析式(用表示).

查看答案和解析>>

某市投資甲、乙兩個工廠,2011年兩工廠的產(chǎn)量均為100萬噸,在今后的若干年內(nèi),甲工廠的年產(chǎn)量每年比上一年增加10萬噸,乙工廠第年比上一年增加萬噸,記2011年為第一年,甲、乙兩工廠第年的年產(chǎn)量分別為萬噸和萬噸.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)若某工廠年產(chǎn)量超過另一工廠年產(chǎn)量的2倍,則將另一工廠兼并,問到哪一年底,其中哪一個工廠被另一個工廠兼并.

【解析】本試題主要考查數(shù)列的通項公式的運用。

第一問由題得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98

第二問,考查等差數(shù)列與等比數(shù)列的綜合,考查用數(shù)列解決實際問題,其步驟是建立數(shù)列模型,進行計算得出結(jié)果,再反饋到實際中去解決問題.由于比較兩個工廠的產(chǎn)量時兩個函數(shù)的形式較特殊,不易求解,故采取了列舉法,數(shù)據(jù)列舉時作表格比較簡捷.

解:(Ⅰ)由題得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98……6分

(Ⅱ)由于n,各年的產(chǎn)量如下表 

n       1     2    3      4     5     6     7     8    

an      100   110   120   130   140   150  160   170

bn      100   102    106  114   130   162   226   354

2015年底甲工廠將被乙工廠兼并

 

查看答案和解析>>

一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4.

(I)從袋中隨機抽取一個球,將其編號記為,然后從袋中余下的三個球中再隨機抽取一個球,將其編號記為.求關(guān)于的一元二次方程有實根的概率;

(II)先從袋中隨機取一個球,該球的編號為m,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為n.若以 作為點P的坐標,求點P落在區(qū)域內(nèi)的概率.

【解析】第一問利用古典概型概率求解所有的基本事件數(shù)共12種,然后利用方程有實根,則滿足△=4a2-4b2≥0,即a2≥b2。,這樣求得事件發(fā)生的基本事件數(shù)為6種,從而得到概率。第二問中,利用所有的基本事件數(shù)為16種。即基本事件(m,n)有:(1,1)  (1,2)   (1,3)  (1,4)   (2,1)  (2,2)  (2,3)   (2,4)   (3,1)   (3,2)  (3,3)    (3,4)   (4,1)   (4,2)   (4,3)  (4,4)共16種。在求解滿足的基本事件數(shù)為(1,1) (2,1)  (2,2) (3,1) 共4種,結(jié)合古典概型求解得到概率。

(1)基本事件(a,b)有:(1,2)   (1,3)  (1,4)   (2,1)   (2,3)   (2,4)   (3,1)   (3,2)  (3,4)   (4,1)   (4,2)   (4,3)共12種。

有實根, ∴△=4a2-4b2≥0,即a2≥b2。

記“有實根”為事件A,則A包含的事件有:(2,1)   (3,1)   (3,2)  (4,1)   (4,2)   (4,3) 共6種。

∴PA.= 。   …………………6分

(2)基本事件(m,n)有:(1,1)  (1,2)   (1,3)  (1,4)   (2,1)  (2,2)  (2,3)   (2,4)   (3,1)   (3,2)  (3,3)    (3,4)   (4,1)   (4,2)   (4,3)  (4,4)共16種。

記“點P落在區(qū)域內(nèi)”為事件B,則B包含的事件有:

(1,1) (2,1)  (2,2) (3,1) 共4種!郟B.=

 

查看答案和解析>>

某省環(huán)保研究所對市中心每天環(huán)境放射性污染情況進行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)與時刻(時) 的關(guān)系為,其中是與氣象有關(guān)的參數(shù),且

(1)令, ,寫出該函數(shù)的單調(diào)區(qū)間,并選擇其中一種情形進行證明;

(2)若用每天的最大值作為當天的綜合放射性污染指數(shù),并記作,求;

(3)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過2,試問目前市中心的綜合放射性污染指數(shù)是否超標?

【解析】第一問利用定義法求證單調(diào)性,并判定結(jié)論。

第二問(2)由函數(shù)的單調(diào)性知,

,即t的取值范圍是. 

時,記

 

上單調(diào)遞減,在上單調(diào)遞增,

第三問因為當且僅當時,.

故當時不超標,當時超標.

 

查看答案和解析>>

改革開放以來,我國高等教育事業(yè)有了突飛猛進的發(fā)展,有人記錄了某村年十年間每年考入大學的人數(shù).為方便計算,年編號為年編號為,…,年編號為.數(shù)據(jù)如下:

年份(

10

人數(shù)(

11

13

14

17

22

30

31

(1)從這年中隨機抽取兩年,求考入大學的人數(shù)至少有年多于人的概率;

(2)根據(jù)前年的數(shù)據(jù),利用最小二乘法求出關(guān)于的回歸方程,并計算第年的估計值和實際值之間的差的絕對值。

 

【解析】(1)設(shè)考入大學人數(shù)至少有1年多于15人的事件為A則P(A)=1-=      (4’)

(2)由已知數(shù)據(jù)得=3,=8,=3+10+24+44+65=146=1+4+9+16+25=55(7’)

=,                   (9’)

 則回歸直線方程為y=2.6x+0.2                           (10’)

則第8年的估計值和真實值之間的差的絕對值為

 

查看答案和解析>>


同步練習冊答案